Description Usage Arguments Value See Also Examples
View source: R/ClassificationViaRegressionWrapper.R
Builds regression models that predict for the positive class whether a particular example belongs to it (1) or not (-1).
Probabilities are generated by transforming the predictions with a softmax.
Inspired by WEKA's ClassificationViaRegression (http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/ClassificationViaRegression.html).
1 | makeClassificationViaRegressionWrapper(learner, predict.type = "response")
|
learner |
[ |
predict.type |
[ |
[Learner].
Other wrapper: makeBaggingWrapper,
makeConstantClassWrapper,
makeCostSensClassifWrapper,
makeCostSensRegrWrapper,
makeDownsampleWrapper,
makeDummyFeaturesWrapper,
makeExtractFDAFeatsWrapper,
makeFeatSelWrapper,
makeFilterWrapper,
makeImputeWrapper,
makeMulticlassWrapper,
makeMultilabelBinaryRelevanceWrapper,
makeMultilabelClassifierChainsWrapper,
makeMultilabelDBRWrapper,
makeMultilabelNestedStackingWrapper,
makeMultilabelStackingWrapper,
makeOverBaggingWrapper,
makePreprocWrapperCaret,
makePreprocWrapper,
makeRemoveConstantFeaturesWrapper,
makeSMOTEWrapper,
makeTuneWrapper,
makeUndersampleWrapper,
makeWeightedClassesWrapper
1 2 3 4 | lrn = makeLearner("regr.rpart")
lrn = makeClassificationViaRegressionWrapper(lrn)
mod = train(lrn, sonar.task, subset = 1:140)
predictions = predict(mod, newdata = getTaskData(sonar.task)[141:208, 1:60])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.