Description Usage Arguments Value References See Also Examples
View source: R/MultilabelBinaryRelevanceWrapper.R
Every learner which is implemented in mlr and which supports binary classification can be converted to a wrapped binary relevance multilabel learner. The multilabel classification problem is converted into simple binary classifications for each label/target on which the binary learner is applied.
Models can easily be accessed via getLearnerModel.
Note that it does not make sense to set a threshold in the used base learner
when you predict probabilities.
On the other hand, it can make a lot of sense, to call setThreshold
on the MultilabelBinaryRelevanceWrapper for each label indvidually;
Or to tune these thresholds with tuneThreshold; especially when you face very
unabalanced class distributions for each binary label.
1 | makeMultilabelBinaryRelevanceWrapper(learner)
|
learner |
[ |
[Learner].
Tsoumakas, G., & Katakis, I. (2006) Multi-label classification: An overview. Dept. of Informatics, Aristotle University of Thessaloniki, Greece.
Other wrapper: makeBaggingWrapper,
makeClassificationViaRegressionWrapper,
makeConstantClassWrapper,
makeCostSensClassifWrapper,
makeCostSensRegrWrapper,
makeDownsampleWrapper,
makeDummyFeaturesWrapper,
makeExtractFDAFeatsWrapper,
makeFeatSelWrapper,
makeFilterWrapper,
makeImputeWrapper,
makeMulticlassWrapper,
makeMultilabelClassifierChainsWrapper,
makeMultilabelDBRWrapper,
makeMultilabelNestedStackingWrapper,
makeMultilabelStackingWrapper,
makeOverBaggingWrapper,
makePreprocWrapperCaret,
makePreprocWrapper,
makeRemoveConstantFeaturesWrapper,
makeSMOTEWrapper,
makeTuneWrapper,
makeUndersampleWrapper,
makeWeightedClassesWrapper
Other multilabel: getMultilabelBinaryPerformances,
makeMultilabelClassifierChainsWrapper,
makeMultilabelDBRWrapper,
makeMultilabelNestedStackingWrapper,
makeMultilabelStackingWrapper
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | d = getTaskData(yeast.task)
# drop some labels so example runs faster
d = d[seq(1, nrow(d), by = 20), c(1:2, 15:17)]
task = makeMultilabelTask(data = d, target = c("label1", "label2"))
lrn = makeLearner("classif.rpart")
lrn = makeMultilabelBinaryRelevanceWrapper(lrn)
lrn = setPredictType(lrn, "prob")
# train, predict and evaluate
mod = train(lrn, task)
pred = predict(mod, task)
performance(pred, measure = list(multilabel.hamloss, multilabel.subset01, multilabel.f1))
# the next call basically has the same structure for any multilabel meta wrapper
getMultilabelBinaryPerformances(pred, measures = list(mmce, auc))
# above works also with predictions from resample!
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.