##########################################################################
##########################################################################
##########################################################################
# Function - plot_one_group
# - Write function to plot output from bootstrap resampling for
# single population estimates across a range of sample sizes
##########################################################################
##########################################################################
##########################################################################
# Define plotting function ---------------------------------
#' Plot output from boot_sample
#'
#' Plot output from boot_sample.
#' @param x Output from boot_sample function. Defaults to 'sims'.
#' @param n_max Numeric. Maximum sample size to extrapolate simulations.
#' @param n_min Numeric. Minimum sample size to extrapolate simulations.
#' Defaults to 3.
#' @import ggplot2
#' @importFrom cowplot plot_grid
#' @importFrom dplyr bind_rows
#' @importFrom dplyr between
#' @export
#' @examples
#' sims <- boot_sample(coreid_data,
#' groups_col = col,
#' groups_which = "Catorhintha schaffneri_APM",
#' n_max = 30,
#' response = response)
#' plot_one_group(x = sims,
#' n_min = 3,
#' n_max = 15)
#'
plot_one_group <- function(x = sims,
n_min = 3,
n_max){
# Create dataframe for experimental data
exp_data <- {{ x }} %>%
dplyr::filter(dplyr::between(sample_size, {{ n_min }}, {{ n_max }}))
# Create dataframe for extrapolations from data
ext_data <- {{ x }} %>%
dplyr::filter(dplyr::between(sample_size, {{ n_max }}, max(sample_size)))
# Make a combined dataframe with id included to colour-code ribbon
both_data <- dplyr::bind_rows(exp_data, ext_data, .id = "id")
# Plot the width of the 95% CI
width_plot <- ggplot2::ggplot(data = {{ x }}, aes(x = sample_size,
y = width_ci)) +
geom_line(data = both_data, aes(x = sample_size,
y = width_ci,
colour = id),
alpha = 0.8) +
scale_colour_manual(values = c("blue", "red"),
labels = c("Experimental", "Extrapolation")) +
geom_ribbon(data = both_data, aes(ymin = sd_width_lower,
ymax = sd_width_upper,
fill = id),
linetype = 3,
alpha = 0.2) +
scale_fill_manual(values = c("blue", "red"),
labels = c("Experimental", "Extrapolation")) +
theme_classic() +
geom_hline(yintercept = 0,
linetype = "dashed") +
labs(x = "Sample size (n)",
y = "Width of confidence interval (95% CI)",
fill = "Data",
subtitle = "(a)") +
theme(panel.border = element_rect(colour = "black", fill = NA),
axis.text = element_text(colour = "black"),
axis.title.x = element_text(margin = unit(c(2, 0, 0, 0), "mm")),
axis.title.y = element_text(margin = unit(c(0, 4, 0, 0), "mm")),
legend.position = "right") +
guides(colour = FALSE)
# Plot the width of the 95% CI
contain_plot <- ggplot2::ggplot(data = {{ x }}, aes(x = sample_size,
y = prop_ci_contain)) +
geom_line(data = both_data, aes(x = sample_size,
y = prop_ci_contain,
colour = id),
alpha = 0.8) +
scale_colour_manual(values = c("blue", "red"),
labels = c("Experimental", "Extrapolation")) +
theme_classic() +
geom_hline(yintercept = 0.90,
linetype = "dashed") +
labs(x = "Sample size (n)",
y = "Proportion of 95%'s \ncontaining median CTL",
colour = "Data",
subtitle = "(b)") +
theme(panel.border = element_rect(colour = "black", fill = NA),
axis.text = element_text(colour = "black"),
axis.title.x = element_text(margin = unit(c(2, 0, 0, 0), "mm")),
axis.title.y = element_text(margin = unit(c(0, 4, 0, 0), "mm")),
legend.position = "right")
# Return the plots
cowplot::plot_grid(width_plot,
contain_plot,
ncol = 2)
}
##########################################################################
##########################################################################
##########################################################################
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.