View source: R/MakeGPFunctionalData.R
| MakeGPFunctionalData | R Documentation | 
For a Gaussian process, create a dense functional data sample of size n over a [0,1] support.
MakeGPFunctionalData(
  n,
  M = 100,
  mu = rep(0, M),
  K = 2,
  lambda = rep(1, K),
  sigma = 0,
  basisType = "cos"
)
| n | number of samples to generate | 
| M | number of equidistant readings per sample (default: 100) | 
| mu | vector of size M specifying the mean (default: rep(0,M)) | 
| K | scalar specifying the number of basis to be used (default: 2) | 
| lambda | vector of size K specifying the variance of each components (default: rep(1,K)) | 
| sigma | The standard deviation of the Gaussian noise added to each observation points. | 
| basisType | string specifying the basis type used; possible options are: 'sin', 'cos' and 'fourier' (default: 'cos') (See code of 'CreateBasis' for implementation details.) | 
A list containing the following fields:
| Y | A vector of noiseless observations. | 
| Yn | A vector of noisy observations if  | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.