#' Flexible equality comparison for data frames
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `all_equal()` allows you to compare data frames, optionally ignoring
#' row and column names. It is deprecated as of dplyr 1.1.0, because it
#' makes it too easy to ignore important differences.
#'
#' @param target,current Two data frames to compare.
#' @param ignore_col_order Should order of columns be ignored?
#' @param ignore_row_order Should order of rows be ignored?
#' @param convert Should similar classes be converted? Currently this will
#' convert factor to character and integer to double.
#' @param ... Ignored. Needed for compatibility with `all.equal()`.
#' @return `TRUE` if equal, otherwise a character vector describing
#' the reasons why they're not equal. Use [isTRUE()] if using the
#' result in an `if` expression.
#' @export
#' @keywords internal
#' @examples
#' scramble <- function(x) x[sample(nrow(x)), sample(ncol(x))]
#'
#' # `all_equal()` ignored row and column ordering by default,
#' # but we now feel that that makes it too easy to make mistakes
#' mtcars2 <- scramble(mtcars)
#' all_equal(mtcars, mtcars2)
#'
#' # Instead, be explicit about the row and column ordering
#' all.equal(
#' mtcars,
#' mtcars2[rownames(mtcars), names(mtcars)]
#' )
all_equal <- function(target, current, ignore_col_order = TRUE,
ignore_row_order = TRUE, convert = FALSE, ...) {
lifecycle::deprecate_warn("1.1.0",
"all_equal()",
"all.equal()",
details = "And manually order the rows/cols as needed"
)
equal_data_frame(target, current,
ignore_col_order = ignore_col_order,
ignore_row_order = ignore_row_order,
convert = convert
)
}
equal_data_frame <- function(x, y, ignore_col_order = TRUE, ignore_row_order = TRUE, convert = FALSE) {
compat <- is_compatible(x, y, ignore_col_order = ignore_col_order, convert = convert)
if (!isTRUE(compat)) {
# revert the bulleting from is_compatible()
return(glue_collapse(compat, sep = "\n"))
}
nrows_x <- nrow(x)
nrows_y <- nrow(y)
if (nrows_x != nrows_y) {
return("Different number of rows.")
}
if (df_n_col(x) == 0L) {
return(TRUE)
}
# suppressMessages({
x <- as_tibble(x, .name_repair = "universal")
y <- as_tibble(y, .name_repair = "universal")
# })
x_split <- dplyr_locate_sorted_groups(x)
y_split <- dplyr_locate_sorted_groups(y[, names(x), drop = FALSE])
# keys must be identical
msg <- ""
if (any(wrong <- !vec_in(x_split$key, y_split$key))) {
rows <- sort(map_int(x_split$loc[which(wrong)], function(.x) .x[1L]))
msg <- paste0(msg, "- Rows in x but not in y: ", glue_collapse(rows, sep = ", "), "\n")
}
if (any(wrong <- !vec_in(y_split$key, x_split$key))) {
rows <- sort(map_int(y_split$loc[which(wrong)], function(.x) .x[1L]))
msg <- paste0(msg, "- Rows in y but not in x: ", glue_collapse(rows, sep = ", "), "\n")
}
if (msg != "") {
return(msg)
}
# keys are identical, check that rows occur the same number of times
if (any(wrong <- lengths(x_split$loc) != lengths(y_split$loc))) {
rows <- sort(map_int(x_split$loc[which(wrong)], function(.x) .x[1L]))
return(paste0("- Rows with difference occurrences in x and y: ",
glue_collapse(rows, sep = ", "),
"\n"
))
}
# then if we care about row order, the id need to be identical
if (!ignore_row_order && !all(vec_equal(x_split$loc, y_split$loc))) {
return("Same row values, but different order")
}
TRUE
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.