QREM_vs | R Documentation |
Use the SEMMS package to perform variable selection. Iteratively alternate between QREM and fitSEMMS.
QREM_vs( inputData, ycol, Zcols, Xcols = c(), qn, nn = 5, nnset = NULL, maxRep = 40, initWithEdgeFinder = FALSE, mincor = 0.75 )
inputData |
A data frame or a file generated for a SEMMS analysis. See the SEMMS package for details. If a data frame, it will be saved in a tempfile. |
ycol |
The number of the column in the input file which should be used as the response. |
Zcols |
The columns in the input file which contain the putative variables. |
Xcols |
The columns in the input file which contain the fixed effects in the model (default is none, c()). |
qn |
The selected quantile. Must be in (0,1). |
nn |
The initial value for the number of non-null variables in SEMMS. Default is 5. |
nnset |
Optional: instead of an initial number of candidates, can specify the column numbers in the Z matrix for the first iteration. Default is null. |
maxRep |
The maximum number of iterations between QREM and fitSEMMS. Default=40. |
initWithEdgeFinder |
Determines whether to use the edgefinder package to find highly correlated pairs of predictors (default=FALSE). |
mincor |
To be passed to the fitSEMMS function (the minimum correlation coefficient between pairs of putative variable, over which they are considered highly correlated). Default is 0.75. |
data(simLargeP) qn <- 0.25 res <- QREM_vs(simLargeP, 1, 2:51, qn=qn) dfsemms <- simLargeP[,c(1, 1+res$fittedSEMMS$gam.out$nn)] qremFit <- QREM(lm, y~., dfsemms, qn=qn) ests <- rbind(qremFit$coef$beta, sqrt(diag(bcov(qremFit,linmod=y~., df=dfsemms, qn=qn)))) rownames(ests) <- c("Estimate","s.d")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.