boot.QREM | R Documentation |
In the fixed effects case, the bcov function provides less variable, and faster estimates through the asymptotic covariance (Bahadur's representation). For mixed models bcov may also be used - it provides good coverage probability in simulations (using the BLUPs for the random effects)
boot.QREM( func, linmod, dframe0, qn, n, userwgts = NULL, ..., sampleFrom = NULL, B = 100, err = 10, maxit = 1000, tol = 0.001, maxInvLambda = 300, seedno = 71371, showEst = FALSE )
func |
The fitting function (lm, lmer, gam). |
linmod |
A formula (the linear model for fitting in the M step). |
dframe0 |
The design matrix. A data frame containing the columns in the formula specified in linmod. |
qn |
The selected quantile. Must be in (0,1). |
n |
The number of samples to be used in the bootstrap. |
userwgts |
The user-provided sampling weights (optional. Default=NULL.) |
... |
Any arguments to be passed to func (except for the formula and weights) |
sampleFrom |
A subset of rows in dframe0 to sample from (for mixed models). Default=NULL. |
B |
The number of bootstrap iterations (default=100). |
err |
The initial value for the estimation error (default=10). |
maxit |
The maximum number of EM iterations (default=1000). |
tol |
The error tolerance level (default=0.001). |
maxInvLambda |
The maximum value of the weight for WLS fitting (default=300). |
seedno |
The seed for reproducibility (default=71371). |
showEst |
Boolean - whether to show an estimated completion time for the bootstrap. Default=FALSE. |
A matrix of the QR coefficients (B rows).
#data(simdf) #qremFit <- QREM(lm,linmod=y~x*x2 +x3, df=simdf, qn=0.2) #estBS <- boot.QREM(lm, linmod=y~x*x2 +x3, df = simdf, qn=0.2, # n=nrow(simdf), B=50) #apply(estBS,2,sd)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.