smoothGeneProfileByPenalizedSpline: Smooth gene expression by fitting penalized splines using...

View source: R/functions.R

smoothGeneProfileByPenalizedSplineR Documentation

Smooth gene expression by fitting penalized splines using general additive models.

Description

Smooth gene expression by fitting penalized splines using general additive models.

Usage

smoothGeneProfileByPenalizedSpline(
  dataConcentration,
  numberOfAnchorPoints = 20,
  gamma = 1.4,
  isInputConcentrations = TRUE,
  ignoreOutliers = FALSE,
  outlierIQRfactor = 3
)

Arguments

dataConcentration

data frame of normalized gene expression for m_u,: genes on rows and sorted cells on columns

numberOfAnchorPoints

integer the number of anchors used for the spline fitting (default: 20)

gamma

numeric a number that will be passed to GAM model to adjust the over-fitting (defaut: 1, use 1.4 if you want to adjust overfit)

isInputConcentrations

logic

ignoreOutliers

logic (default: TRUE)

outlierIQRfactor

numeric (default: 3)

Value

a data frame with smoothed values in columns and sorted cells order in rows

Examples

data_spline <- smoothGeneProfileByPenalizedSpline(dataConcentration=observed.data["PCNA",], numberOfAnchorPoints = 20, gamma=1.4)


haiyueliu/Eskrate documentation built on Sept. 3, 2023, 3:33 p.m.