smoothGeneProfileByPenalizedSpline | R Documentation |
Smooth gene expression by fitting penalized splines using general additive models.
smoothGeneProfileByPenalizedSpline(
dataConcentration,
numberOfAnchorPoints = 20,
gamma = 1.4,
isInputConcentrations = TRUE,
ignoreOutliers = FALSE,
outlierIQRfactor = 3
)
dataConcentration |
data frame of normalized gene expression for m_u,: genes on rows and sorted cells on columns |
numberOfAnchorPoints |
integer the number of anchors used for the spline fitting (default: 20) |
gamma |
numeric a number that will be passed to GAM model to adjust the over-fitting (defaut: 1, use 1.4 if you want to adjust overfit) |
isInputConcentrations |
logic |
ignoreOutliers |
logic (default: TRUE) |
outlierIQRfactor |
numeric (default: 3) |
a data frame with smoothed values in columns and sorted cells order in rows
data_spline <- smoothGeneProfileByPenalizedSpline(dataConcentration=observed.data["PCNA",], numberOfAnchorPoints = 20, gamma=1.4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.