Description Usage Arguments Details Value References Examples
View source: R/cluster-classifier.R
In GSgalgoR, the partition around medioids (PAM) algorithm is the
default clustering process used under the evolutionary process.
1 | cluster_algorithm(c, k)
|
c |
a dissimilarity matrix object of type |
k |
positive integer specifying the number of clusters, less than the number of observations |
The function runs the pam function of
the 'cluster' package
with options cluster.only =TRUE,
diss = TRUE, do.swap=TRUE,
keep.diss=FALSE, keep.data = FALSE,
pamonce= 2
Returns a 'list' with the value '$cluster' which
contains the cluster assignment of each of the samples evaluated
Reynolds, A., Richards, G., de la Iglesia, B. and Rayward-Smith, V. (1992) Clustering rules: A comparison of partitioning and hierarchical clustering algorithms; Journal of Mathematical Modelling and Algorithms 5, 475–504. 10.1007/s10852-005-9022-1.
Erich Schubert and Peter J. Rousseeuw (2019) Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS Algorithms; Preprint, (https://arxiv.org/abs/1810.05691).
1 2 3 4 5 6 7 8 9 10 | # load example dataset
require(iC10TrainingData)
require(pamr)
data(train.Exp)
calculate_distance <- select_distance(distancetype = "pearson")
Dist <- calculate_distance(train.Exp)
k <- 4
Pam <- cluster_algorithm(Dist, k)
table(Pam$cluster)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.