#' @export
Hot_GUIDANCE2 <- function(msa, n.coopt, type, td,
files, raw_seq, msa.program, method,
exec){
# create start_tree
li <- msa
msa <- read.fas(msa, type = type)
msa.nj <- ape::nj(dist.ml(as.phyDat(msa)))
msa.nj <- root(msa.nj, outgroup = msa.nj$tip.label[1])
msa.nj <- multi2di(msa.nj)
msa.nj <- compute.brlen(msa.nj)
## produce MSA partitions
align_parts <- partitions(msa.nj)
## sample 4 or n co-optimal
nt <- Ntip(msa.nj)
n.co <- sample((nt-3)*8, n.coopt)
n.co_mat <- data.frame(n = 1:((nt-3)*8),
part = rep(1:(nt-3), each = 8),
n.in.part = rep(1:8, times = (nt-3)))
n.co.sub <- n.co_mat[n.co_mat$n %in% n.co,]
# reduce partitions to the randomly choosen co-optimal MSA number
align_parts <- align_parts[,n.co.sub$part]
# number of random MSA within partition (remember, each partition has 8 alignments)
n.co.sub <- n.co.sub$n.in.part
# make the 4 or n alignments
alt_msas <- foreach(z = 1:ncol(align_parts)) %do% {
# setTxtProgressBar(pb, i)
align_part_set(x = raw_seq, partition_set = align_parts[,z],
method = method, exec = exec, msa.program = msa.program,
coopt.sub = n.co.sub[z])
}
## unlist
alt_msas <- foreach(k = 1:length(alt_msas), .combine = c) %do% {
alt_msas[[k]]
}
## write to files
for(j in 1:n.coopt)
write.fas(alt_msas[[j]], files[j])
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.