runMapping: Run single-cell mapping

runMappingR Documentation

Run single-cell mapping

Description

Mapping the output of "getSingleCellDeconv()"to the best matching cell from the reference dataset

Usage

runMapping(
  object,
  scDF,
  ref.new,
  cell_type_var = "annotation_level_4",
  model = c("oGA", "BF"),
  subset_ref = T,
  only_var = T,
  n_feature = 3000,
  max_cells = 10000,
  AE_norm = F,
  dropout = 0,
  bottleneck = 16,
  activation = "relu",
  layers = c(128, 64, 32),
  epochs = 20,
  multicore = T,
  workers = 16,
  iter = 200,
  iter_GA = 20,
  nr_mut = 2,
  nr_offsprings = 7,
  cross_over_point = 0.5,
  ram = 60
)

Arguments

object

SPATA2 object

scDF

Data.frame; Output of the getSingleCellDeconv()

ref.new

Seurat Object; Reference dataset used for runRCTD()

cell_type_var

Character value; The col of the Seurat meta data indicating the cell type annotations

model

Character value; Model "BF" randomly select cell compositions and select the best match. Model "oGA" will perform a conditional genetic algorithm to find the best match.

subset_ref

Logical, if TRUE, Seurat object will we downsized to increase speed.

only_var

Logical, if TRUE only consider variable genes for mapping

n_feature

Integer value: Number of variable genes

max_cells

Integer value: Number of cells for downsampling

AE_norm

Logical, if TRUE use an autoencoder for data integration and normalization (recommended)

multicore

Logical, if TRUE use multicore

workers

Integer, Number of cors

iter

Integer: For model BF: Number of random spot compositions; For model oGA size of initial population

iter_GA

Integer: Number of iterations of the oGA model

nr_mut

Integer: Number of mutations

nr_offsprings

Integer: Number of offsprings

cross_over_point

Numeric value: Percentage of cross-over cutt-off

ram

Integer: GB of ram can be used for multicore session

Author(s)

Dieter Henrik Heiland


heilandd/SPATAwrappers documentation built on Oct. 2, 2022, 1:40 p.m.