Description Usage Arguments Details Value See Also
View source: R/Unitary_Gates.R
A Gate that performs a rotation around the X+Z axis of the Bloch sphere.
1 |
... |
parameters to pass |
The unitary matrix of HPowGate(exponent=t) is: '[[g·(c-i·s/sqrt(2)), -i·g·s/sqrt(2)],' '[-i·g·s/sqrt(2)], g·(c+i·s/sqrt(2))]]' where c = cos(π·t/2) s = sin(π·t/2) g = exp(i·π·t/2). Note in particular that for t=1, this gives the Hadamard matrix. gate_h, the Hadamard gate, is an instance of this gate at exponent=1.
None
Other Unitary gates and operations:
gate_Gate()
,
gate_ccnot_pow()
,
gate_ccnot()
,
gate_ccx_pow()
,
gate_ccx()
,
gate_ccz_pow()
,
gate_ccz()
,
gate_cnot_pow()
,
gate_cnot()
,
gate_controlled()
,
gate_cs_wap()
,
gate_cx_pow()
,
gate_cx()
,
gate_cz_pow()
,
gate_cz()
,
gate_eigen()
,
gate_fredkin()
,
gate_fsim()
,
gate_givens()
,
gate_global_phase_operation()
,
gate_h()
,
gate_identity_each()
,
gate_identity()
,
gate_is_wap_pow()
,
gate_iswap()
,
gate_i()
,
gate_matrix()
,
gate_operation()
,
gate_phase_gradient()
,
gate_phased_is_wap_pow()
,
gate_phased_xz()
,
gate_quantum_fourier_transform()
,
gate_riswap()
,
gate_rx()
,
gate_ry()
,
gate_single_qubit()
,
gate_swap_pow()
,
gate_swap()
,
gate_s()
,
gate_tagged_opertaion()
,
gate_three_qubit_diagonal()
,
gate_three_qubit()
,
gate_toffoli()
,
gate_t()
,
gate_wait()
,
gate_x_pow()
,
gate_xx_pow()
,
gate_xx()
,
gate_x()
,
gate_y_pow()
,
gate_yy_pow()
,
gate_yy()
,
gate_y()
,
gate_z_pow()
,
gate_zz_pow()
,
gate_zz()
,
gate_z()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.