Description Usage Arguments Details Value See Also
View source: R/Unitary_Gates.R
A single qubit operation expressed as $Z^z Z^a X^x Z^-a$.
1 |
... |
parameters to pass. |
The above expression is a matrix multiplication with time going to the left. In quantum circuit notation, this operation decomposes into this circuit: ───Z^(-a)──X^x──Z^a────Z^z───$ The axis phase exponent (a) decides which axis in the XY plane to rotate around. The amount of rotation around that axis is decided by the x exponent (x). Then the z exponent (z) decides how much to phase the qubit.
None
Other Unitary gates and operations:
gate_Gate()
,
gate_ccnot_pow()
,
gate_ccnot()
,
gate_ccx_pow()
,
gate_ccx()
,
gate_ccz_pow()
,
gate_ccz()
,
gate_cnot_pow()
,
gate_cnot()
,
gate_controlled()
,
gate_cs_wap()
,
gate_cx_pow()
,
gate_cx()
,
gate_cz_pow()
,
gate_cz()
,
gate_eigen()
,
gate_fredkin()
,
gate_fsim()
,
gate_givens()
,
gate_global_phase_operation()
,
gate_hpow()
,
gate_h()
,
gate_identity_each()
,
gate_identity()
,
gate_is_wap_pow()
,
gate_iswap()
,
gate_i()
,
gate_matrix()
,
gate_operation()
,
gate_phase_gradient()
,
gate_phased_is_wap_pow()
,
gate_quantum_fourier_transform()
,
gate_riswap()
,
gate_rx()
,
gate_ry()
,
gate_single_qubit()
,
gate_swap_pow()
,
gate_swap()
,
gate_s()
,
gate_tagged_opertaion()
,
gate_three_qubit_diagonal()
,
gate_three_qubit()
,
gate_toffoli()
,
gate_t()
,
gate_wait()
,
gate_x_pow()
,
gate_xx_pow()
,
gate_xx()
,
gate_x()
,
gate_y_pow()
,
gate_yy_pow()
,
gate_yy()
,
gate_y()
,
gate_z_pow()
,
gate_zz_pow()
,
gate_zz()
,
gate_z()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.