Description Usage Arguments Value See Also
View source: R/Pauli_Clifford.R
Computes non-negative integer power of single-qubit Pauli combination.
1 | pauli_pow_combination(ai, ax, ay, az, exponent)
|
ai |
ai |
ax |
ax |
ay |
ay |
az |
az |
exponent |
exponent |
Returns scalar coefficients bi, bx, by, bz such that bi I + bx X + by Y + bz Z = (ai I + ax X + ay Y + az Z)^exponent Correctness of the formulas below follows from the binomial expansion and the fact that for any real or complex vector (ax, ay, az) and any non-negative integer k: [ax X + ay Y + az Z]^(2k) = (ax^2 + ay^2 + az^2)^k I
Other Pauli and Clifford groups:
clifford_single_qubit_gate()
,
clifford_state()
,
clifford_tableau()
,
pauli_base_dense_string()
,
pauli_basis()
,
pauli_dense_string()
,
pauli_gate_like()
,
pauli_interaction_gate()
,
pauli_mutable_dense_string()
,
pauli_string_gate_operation()
,
pauli_string()
,
pauli_sum_like()
,
pauli_sum()
,
pauli_transform()
,
pauli()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.