context("metrics")
source("utils.R")
data("iris")
build_model <- function(metric) {
model = keras_model_sequential() %>%
layer_dense(units = 10, input_shape = ncol(iris) - 1,activation = activation_lisht) %>%
layer_dense(units = 3)
model %>% compile(loss = 'categorical_crossentropy',
optimizer = optimizer_radam(),
metrics = metric)
#history = model %>% fit(as.matrix(iris[1:4]),
# tf$keras$utils$to_categorical(iris[,4]),
# epochs = 2,
# validation_split = 0.2,
# verbose = 1 )
}
test_metrics <- function(name, metric) {
test_succeeds(paste(name), {
build_model(metric)
})
}
test_metrics("cohen_kappa",metric_cohen_kappa(num_classes = 3))
test_metrics("fbetascore",metric_fbetascore(num_classes = 3))
test_metrics("MatthewsCorrelationCoefficient",metric_mcc(num_classes = 3))
test_metrics("multilabel_confusion_matrix",metric_multilabel_confusion_matrix(num_classes = 3))
test_metrics("f1score",tfaddons::metrics_f1score(num_classes = 3))
#test_metrics("R^2",metric_rsquare())
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.