#################################################################
## Iris1 ##
#################################################################
# Load libraries
library('MixSim')
library('mclust')
# Load source files for minibatch EM algorithms
source('https://raw.githubusercontent.com/hiendn/StoEMMIX/master/Manuscript_files/20190128_main_functions.R')
# Set memory limit
Sys.setenv('R_MAX_VSIZE'=10000000000000)
# Load in Iris data
data("iris", package = "datasets")
## Extract various required variables
# Get dimensions
d <- ncol(iris) - 1
# Get species label
id <- as.integer(iris[, 5])
# Get the number of subpopulations
g <- max(id)
## Estimate mixture model parameters
# Proportions
Pi <- prop.table(tabulate(id))
# Mean vectors
Mu <- t(sapply(1:g, function(k){ colMeans(iris[id == k, -5]) }))
# Covariance matrices
Sigma <- sapply(1:g, function(k){ var(iris[id == k, -5]) })
# Set the dimension of the covariance array
dim(Sigma) <- c(d, d, g)
## Setup parameters
# Number of observations to simulation
NN <- 10^6
# Set the number repetitions
Rep <- 100
# Number of components to fit
Groups <- 3
# Set a random seed
set.seed(20190129)
# Construct a matrix to store the results
Results <- matrix(NA,100,9)
# Conduct simulation study
for (ii in 1:Rep) {
# Simulate data
Data <- simdataset(NN,Pi,Mu,Sigma)$X
# Randomly generate labels for initialization
Samp <- sample(1:Groups,NN,replace = T)
# Initialize parameters
msEst <- mstep(modelName = "VVV", data = Data, z = unmap(Samp))
# Run batch EM algorithm
MC <- em('VVV', data=Data, parameters = msEst$parameters, control = emControl(eps=0,tol=0,itmax=10))
# Get likelihood value for batch EM algorithm
Results[ii,1] <- MC$loglik
# Run minibatch algorithm with batch size 10000
Sto <- stoEMMIX_pol(t(Data), msEst$parameters$pro, msEst$parameters$mean,
msEst$parameters$variance$sigma,
10*NN/10000,Groups,0.6,1-10^-10,10000)
Results[ii,2] <- Sto$`reg_log-likelihood`
Results[ii,3] <- Sto$`pol_log-likelihood`
# Run minibatch algorithm with batch size 20000
Sto <- stoEMMIX_pol(t(Data), msEst$parameters$pro, msEst$parameters$mean,
msEst$parameters$variance$sigma,
10*NN/20000,Groups,0.6,1-10^-10,20000)
Results[ii,4] <- Sto$`reg_log-likelihood`
Results[ii,5] <- Sto$`pol_log-likelihood`
# Run truncated minibatch algorithm with batch size 10000
Sto <- stoEMMIX_poltrunc(t(Data), msEst$parameters$pro, msEst$parameters$mean,
msEst$parameters$variance$sigma,
10*NN/10000,Groups,0.6,1-10^-10,10000,
1000,1000,1000)
Results[ii,6] <- Sto$`reg_log-likelihood`
Results[ii,7] <- Sto$`pol_log-likelihood`
# Run truncated minibatch algorithm with batch size 20000
Sto <- stoEMMIX_poltrunc(t(Data), msEst$parameters$pro, msEst$parameters$mean,
msEst$parameters$variance$sigma,
10*NN/20000,Groups,0.6,1-10^-10,20000,
1000,1000,1000)
Results[ii,8] <- Sto$`reg_log-likelihood`
Results[ii,9] <- Sto$`pol_log-likelihood`
# Save and print outputs
save(Results,file='./Iris1.rdata')
print(c(ii,Results[ii,]))
# Also sink results to a text file
sink('./Iris1.txt',append = TRUE)
cat(ii,Results[ii,],'\n')
sink()
}
#################################################################
## Iris2 ##
#################################################################
# Load libraries
library('MixSim')
library('mclust')
# Load source files for minibatch EM algorithms
source('https://raw.githubusercontent.com/hiendn/StoEMMIX/master/Manuscript_files/20190128_main_functions.R')
# Set memory limit
Sys.setenv('R_MAX_VSIZE'=10000000000000)
# Load in Iris data
data("iris", package = "datasets")
## Extract various required variables
# Get dimensions
d <- ncol(iris) - 1
# Get species label
id <- as.integer(iris[, 5])
# Get the number of subpopulations
g <- max(id)
## Estimate mixture model parameters
# Proportions
Pi <- prop.table(tabulate(id))
# Mean vectors
Mu <- t(sapply(1:g, function(k){ colMeans(iris[id == k, -5]) }))
# Covariance matrices
Sigma <- sapply(1:g, function(k){ var(iris[id == k, -5]) })
# Set the dimension of the covariance array
dim(Sigma) <- c(d, d, g)
## Setup parameters
# Number of observations to simulation
NN <- 10^7
# Set the number repetitions
Rep <- 100
# Number of components to fit
Groups <- 3
# Set a random seed
set.seed(20190129)
# Construct a matrix to store the results
Results <- matrix(NA,100,9)
# Conduct simulation study
for (ii in 1:Rep) {
# Simulate data
Data <- simdataset(NN,Pi,Mu,Sigma)$X
# Randomly generate labels for initialization
Samp <- sample(1:Groups,NN,replace = T)
# Initialize parameters
msEst <- mstep(modelName = "VVV", data = Data, z = unmap(Samp))
# Run batch EM algorithm
MC <- em('VVV', data=Data, parameters = msEst$parameters, control = emControl(eps=0,tol=0,itmax=10))
# Get likelihood value for batch EM algorithm
Results[ii,1] <- MC$loglik
# Run minibatch algorithm with batch size 10000
Sto <- stoEMMIX_pol(t(Data), msEst$parameters$pro, msEst$parameters$mean,
msEst$parameters$variance$sigma,
10*NN/100000,Groups,0.6,1-10^-10,100000)
Results[ii,2] <- Sto$`reg_log-likelihood`
Results[ii,3] <- Sto$`pol_log-likelihood`
# Run minibatch algorithm with batch size 20000
Sto <- stoEMMIX_pol(t(Data), msEst$parameters$pro, msEst$parameters$mean,
msEst$parameters$variance$sigma,
10*NN/200000,Groups,0.6,1-10^-10,200000)
Results[ii,4] <- Sto$`reg_log-likelihood`
Results[ii,5] <- Sto$`pol_log-likelihood`
# Run truncated minibatch algorithm with batch size 10000
Sto <- stoEMMIX_poltrunc(t(Data), msEst$parameters$pro, msEst$parameters$mean,
msEst$parameters$variance$sigma,
10*NN/100000,Groups,0.6,1-10^-10,100000,
1000,1000,1000)
Results[ii,6] <- Sto$`reg_log-likelihood`
Results[ii,7] <- Sto$`pol_log-likelihood`
# Run truncated minibatch algorithm with batch size 20000
Sto <- stoEMMIX_poltrunc(t(Data), msEst$parameters$pro, msEst$parameters$mean,
msEst$parameters$variance$sigma,
10*NN/200000,Groups,0.6,1-10^-10,200000,
1000,1000,1000)
Results[ii,8] <- Sto$`reg_log-likelihood`
Results[ii,9] <- Sto$`pol_log-likelihood`
# Save and print outputs
save(Results,file='./Iris2.rdata')
print(c(ii,Results[ii,]))
# Also sink results to a text file
sink('./Iris2.txt',append = TRUE)
cat(ii,Results[ii,],'\n')
sink()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.