rrLASSO.S5 | R Documentation |
Simplified Shotgun Stochastic Search with Screening (S5) algorithm to solve the reduced reciprocal LASSO, based on a source code adapted from 'BayesS5' by Minsuk Shin.
rrLASSO.S5(
X,
y,
S = 30,
lam = 1,
intercept = TRUE,
verbose = FALSE,
seed = 1234
)
X |
A numeric matrix with standardized predictors in columns and samples in rows. |
y |
A mean-centered continuous response variable with matching rows with X. |
S |
A screening size of variables. Default is 30. |
lam |
A tuning parameter for the rrLASSO objective function. Default is 1. |
intercept |
If TRUE, intercept is included in the final OLS fit. The default is TRUE. |
verbose |
If TRUE, the function prints the current status of the S5 in each temperature. The default is FALSE. |
seed |
Seed value for reproducibility. Default is 1234. |
A list containing the following components is returned:
hppm |
Index of the highest posterior probablity model. |
marg.prob |
Marginal posterior probablities of the coefficients. |
beta |
OLS coefficients from the final rLASSO model. |
time |
Computation time in seconds. |
## Not run:
#########################
# Load Prostate dataset #
#########################
library(ElemStatLearn)
prost<-prostate
###########################################
# Scale data and prepare train/test split #
###########################################
prost.std <- data.frame(cbind(scale(prost[,1:8]),prost$lpsa))
names(prost.std)[9] <- 'lpsa'
data.train <- prost.std[prost$train,]
data.test <- prost.std[!prost$train,]
##################################
# Extract standardized variables #
##################################
y.train = data.train$lpsa - mean(data.train$lpsa)
y.test <- data.test$lpsa - mean(data.test$lpsa)
x.train = scale(as.matrix(data.train[,1:8], ncol=8))
x.test = scale(as.matrix(data.test[,1:8], ncol=8))
#################################
# Reduced Reciprocal LASSO (S5) #
#################################
rrLasso<- rrLASSO.S5(x.train, y.train)
y.pred.rrLasso<-x.test%*%rrLasso$beta[-1]
mean((y.pred.rrLasso - y.test)^2) # Performance on test data
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.