library(tidyverse) library(tidybiology) library(mitocarta) library(viridis) #clear environment #rm(list=ls()) mitocarta_class5 <- mitocarta %>% filter(mcarta2_list == 1) %>% mutate(cerebrum = if_else(str_detect(tissues, "cerebrum|all"), TRUE, FALSE)) %>% mutate(cerebellum = if_else(str_detect(tissues, "cerebellum|all"), TRUE, FALSE)) %>% mutate(brainstem = if_else(str_detect(tissues, "brainstem|all"), TRUE, FALSE)) %>% mutate(spinalcord = if_else(str_detect(tissues, "spinalcord|all"), TRUE, FALSE)) %>% mutate(kidney = if_else(str_detect(tissues, "kidney|all"), TRUE, FALSE)) %>% mutate(liver = if_else(str_detect(tissues, "liver|all"), TRUE, FALSE)) %>% mutate(heart = if_else(str_detect(tissues, "heart|all"), TRUE, FALSE)) %>% mutate(skeletalmuscle = if_else(str_detect(tissues, "skeletalmuscle|all"), TRUE, FALSE)) %>% mutate(adipose = if_else(str_detect(tissues, "adipose|all"), TRUE, FALSE)) %>% mutate(smallintestine = if_else(str_detect(tissues, "smallintestine|all"), TRUE, FALSE)) %>% mutate(largeintestine = if_else(str_detect(tissues, "largeintestine|all"), TRUE, FALSE)) %>% mutate(stomach = if_else(str_detect(tissues, "stomach|all"), TRUE, FALSE)) %>% mutate(placenta = if_else(str_detect(tissues, "placenta|all"), TRUE, FALSE)) %>% mutate(testis = if_else(str_detect(tissues, "testis|all"), TRUE, FALSE)) %>% select(symbol, tissues, cerebrum:testis) mitocarta_class5 %>% summarize_if(is.logical, sum, na.rm = TRUE) mitocarta_class5_long <- mitocarta_class5 %>% pivot_longer(cerebrum:testis, names_to = "location", values_to = "true_false") mitocarta_class5_long %>% group_by(location) %>% count(true_false, sort = TRUE) mitocarta_class5_intensity <- mitocarta %>% filter(mcarta2_list == 1) %>% pivot_longer(cerebrum_total_peak_intensity_log10:testis_total_peak_intensity_log10, names_to = "location_intensity", values_to = "intensity") %>% select(symbol, location_intensity, intensity, protein_length) mitocarta_class5_intensity$location_intensity <- str_replace(mitocarta_class5_intensity$location_intensity, "_total_peak_intensity_log10", "") mitocarta_class5 <- mitocarta_class5_long %>% left_join(mitocarta_class5_intensity, by = c("symbol" = "symbol", "location" = "location_intensity")) %>% select(-tissues) rm(list = c("mitocarta_class5_intensity", "mitocarta_class5_long"))
#####STUDENTS START HERE##### #Which tissue has the most unique mitochondrial proteins? mitocarta_class5 %>% group_by(location) %>% count(true_false, sort = TRUE) #Store an object to call below top <- mitocarta_class5 %>% group_by(location) %>% count(true_false, sort = TRUE) %>% ungroup() %>% slice(1) #calculate average lengths of all proteins avg_length <- mitocarta_class5 %>% filter(true_false == TRUE) %>% group_by(location) %>% summarize(mean_length = mean(protein_length, na.rm = TRUE)) %>% #need to remove NAs to make fun(mean) work arrange(desc(mean_length)) #Store favorite gene fav <- mitocarta_class5 %>% filter(symbol == params$gene) %>% arrange(desc(intensity)) %>% slice(1) #store an object to call longer longer <- if_else( fav$protein_length > avg_length %>% filter(location == fav$location) %>% pull(mean_length), "longer", "shorter" )
My favorite gene is r fav$symbol
, which encodes a mitochondrial protein that is most abundant in the r fav$location
and is r fav$protein_length
amino acids long. The average length of proteins in the r fav$location
is r round(avg_length %>% filter(location == fav$location) %>% pull(mean_length),0)
amino acids, which makes r fav$symbol
r longer
than average.
#Session information for provenance and reproducibility session_provenance()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.