make_exemplars_from_data | R Documentation |
Constructs an exemplar model for all categories found in the data.
make_exemplars_from_data(
data,
group = NULL,
category = "category",
cues,
sim_function = function(x, y) {
j <- 2
k <- 1
distance <- (x - y)^j
similarity <- exp(-distance * k)
},
verbose = F
)
make_exemplar_model_from_data(
data,
group = NULL,
category = "category",
cues,
sim_function = function(x, y) {
j <- 2
k <- 1
distance <- (x - y)^j
similarity <- exp(-distance * k)
},
...,
verbose = F
)
data |
The tibble or data.frame from which to construct the exemplar model. |
group |
Optionally, a vector of one or more grouping variables. If group is not NULL, one MVG or
ideal observers will be derived for each level of |
category |
Name of variable in |
cues |
Name(s) of variables in |
sim_function |
Similarity function that is used to calculate exemplar-to-examplar similarity. Defaults
to |
verbose |
If true provides more information. (default: FALSE) |
prior |
Optionally specify a prior probability for each category (in each group). (default: a uniform prior over all categories). |
lapse_rate |
Optionally specify a lapse rate. (default: |
lapse_bias |
Optionally specify a lapse bias. (default: |
Sigma_noise |
Optionally specify a (multivariate Gaussian) covariance matrix of perceptual noise. This argument will be ignored if NULL. (default: NULL) |
A tibble that is an MVG or MVG ideal observer object.
TBD
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.