View source: R/visualize-NIW-IA-stanfit.R
plot_expected_ibbu_stanfit_categories | R Documentation |
Plot bivariate Gaussian categories expected given the parameters inferred by incremental Bayesian belief- updating (IBBU). Specifically, the categories are derived by marginalizing over the uncertainty represented by the (post-warmup) MCMC samples. Two methods are available (specified by 'type'), which differ in their computational demands and speed.
plot_expected_ibbu_stanfit_categories(model, type, ...)
plot_expected_ibbu_stanfit_categories_contour(
model,
cues = get_cue_levels_from_stanfit(model),
...
)
plot_expected_ibbu_stanfit_categories_density(
model,
cues = get_cue_levels_from_stanfit(model),
...
)
plot_expected_ibbu_stanfit_categories_contour2D(
model,
categories = get_category_levels_from_stanfit(model),
groups = get_group_levels_from_stanfit(model, include_prior = T),
cues = get_cue_levels_from_stanfit(model),
plot.test = T,
plot.exposure = F,
annotate_inferred_category_means = c("rug", "text"),
untransform_cues = TRUE,
levels = plogis(seq(-15, qlogis(0.95), length.out = 20)),
category.colors = get_default_colors("category", categories)
)
plot_expected_ibbu_stanfit_categories_density1D(
model,
categories = get_category_levels_from_stanfit(model),
groups = get_group_levels_from_stanfit(model, include_prior = T),
cues = get_cue_levels_from_stanfit(model),
ndraws = NULL,
plot.test = T,
plot.exposure = F,
annotate_inferred_category_means = c("rug", "text"),
untransform_cues = TRUE,
category.colors = get_default_colors("category", categories),
xlim = NULL,
resolution = 101
)
plot_expected_ibbu_stanfit_categories_density2D(
model,
categories = get_category_levels_from_stanfit(model),
groups = get_group_levels_from_stanfit(model, include_prior = T),
cues = get_cue_levels_from_stanfit(model),
ndraws = NULL,
plot.test = T,
plot.exposure = F,
annotate_inferred_category_means = c("rug", "text"),
untransform_cues = TRUE,
category.colors = get_default_colors("category", categories),
xlim = NULL,
ylim = NULL,
resolution = 25
)
model |
An mv-ibbu-stanfit object. |
type |
Either '"contour"' or '"density"', specifying the type of plot. Note that the contour plot is *much*
faster. It simply gets the expected values of |
categories , groups , cues |
Character vector of categories, groups, and cues to be plotted. (default: all categories, groups, and cues in the model will be plotted) |
plot.test , plot.exposure |
Should the test and/or exposure stimuli be plotted? (default: 'TRUE' for 'plot.test', 'FALSE' for 'plot.exposure') The test items are plotted as black points. The exposure mean is plotted as point, and the .95 interval of cue distributions during exposure are plotted as dashed ellipse in the same color as the expected categories. |
annotate_inferred_category_means |
Character vector indicating whether the location and value of the mean be indicated through data rugs ('"rug"') and/or text labels ('"text"')? Set to NULL to ignore. (default: 'c("rug", "text")') |
untransform_cues |
Should m_0 and S_0 be transformed back into the original cue space? (default: 'TRUE') |
levels |
Used only if 'type' is '"contour"'. levels The cumulative probability levels that should be plotted (using 'geom_polygon()') around the mean. By default the most transparent ellipse still drawn corresponds to .95. |
category.colors |
Vector of colors of same length as categories. |
ndraws |
Number of draws from posterior to use for plot, or 'NULL' if all draws are to be returned. (default: 'NULL') |
xlim , ylim |
For density plots. Limits for the x- and y-axis. |
resolution |
For density plots. How many steps along x and y should be calculated? Note that computational complexity increases quadratically with resolution. (default: 25) |
data.grid.xlim , data.grid.ylim , data.grid.resolution |
Used only if 'type' is '"density"'. Limits for x- and y-axis as well as resolution of the data.grid, defining the range over which the posterior predictive (multivariate Student-T density) is calculated. Note that the number of densities to calculate is a *quadratic* function of 'data.grid.resolution'. The default for 'data.grid.resolution' is 10, corresponding to 100 densities to be calculated for each MCMC draw. |
Typically, the categories, groups, and cues
are automatically added to the fit during the creation of the fit. If necessary, however, it is possible to use
recover_types
on the stanfit object to add or change these levels later.
ggplot object.
TBD
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.