# checking for args
args = commandArgs(trailingOnly=TRUE) # checking for args
if (length(args)!=2) { # test if there is at least one argument: if not, return an error
stop("Output dir or input file missing.\n", call.=FALSE)
}
outdir <- args[1]
run_type <- args[2]
region <- unlist(strsplit(run_type, "_"))[1]
slurm_arrayid <- Sys.getenv('SLURM_ARRAY_TASK_ID') # grab the array id value from the environment variable passed from sbatch
slurm_arrayid <- as.numeric(slurm_arrayid) # coerce the value to an integer
fname_tam <- paste0(outdir, slurm_arrayid,'_tam.csv')
fname_H <- paste0(outdir, slurm_arrayid,'_H.csv')
library("RiverML")
source("envpath.R")
root.dir <- get_rootdir()
# user defined functions
source('/home/hguillon/farm_scripts/terrain_unix.R')
###################################
########### FIELD SITES ###########
###################################
input_dir <- "exploitation/input/california-rivers"
fname <- paste0(run_type,"_input.csv")
input_data <- get_input_data(file.path(input_dir, fname))
df_optim <- HPC_optim(nrow(input_data), io_time = 20e3, computing_time = 4e3, pl = FALSE)
n_start <- (slurm_arrayid - 1) * df_optim$task_per_array + 1
n_end <- n_start + (df_optim$task_per_array - 1)
if (n_end > nrow(input_data)) n_end <- nrow(input_data)
n <- seq(n_start, n_end)
if(!file.exists(fname_tam)){
dem_dir <- 'data/california-rivers/gis-files/NED'
dem_file <- 'CA_DEM.grd'
DEM <- raster(file.path(root.dir,dem_dir,dem_file))
polys <- get_input_polygons(input_data, n, DEM, .dl = 25)
ls <- get_terrain_metrics(polys, DEM, curvature = FALSE)
raster_stats_df <- get_stats_df(raster_stats, "rstr", ls, dem_file)
target_streamlines <- get_target_streamlines(region)
target_streamlines <- target_streamlines[n, ]
near_channel_stats_df <- get_stats_df(near_channel_stats, "nrch", ls, lines = target_streamlines, dem_file)
target_data_df_tam <- cbind(raster_stats_df, near_channel_stats_df)
write.csv(target_data_df_tam, file.path(fname_tam), row.names = FALSE)
rm(DEM)
gc()
}
if(!file.exists(fname_H)){
lH <- get_H_rasters()
H_rasters <- lH$H_rasters
upper_scales <- lH$upper_scales
target_data_df_H <- join_streamlines_with_H_rasters(H_rasters, target_streamlines, upper_scales)
write.csv(target_data_df_H, file.path(fname_H), row.names = FALSE)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.