knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 10, fig.height = 8, message = FALSE, warning = FALSE )
library(regionaldrivers) library(magrittr)
SSCT_data
and SSCT_labelled_data
are loaded with the package.
Here is what 10 random rows of each looks like:
SSCT_labelled_data %>% dplyr::sample_n(10) %>% knitr::kable(digits = 3, format = "html", caption = "SSCT_labelled_data") %>% kableExtra::kable_styling(bootstrap_options = c("hover", "condensed")) %>% kableExtra::scroll_box(width = "7in", height = "5in")
SSCT_data %>% dplyr::sample_n(10) %>% knitr::kable(digits = 3, format = "html", caption = "SSCT_data") %>% kableExtra::kable_styling(bootstrap_options = c("hover", "condensed")) %>% kableExtra::scroll_box(width = "7in", height = "5in")
We transform the data to retain what we need for the analysis:
drivers_data <- cbind(SSCT_labelled_data, SSCT_data) %>% dplyr::select(c("layer_sd.rstr", "slope_mean.rstr", "SLOPE", "RUSLE", "ward")) %>% # dplyr::select(c("CONFINEMEN", "layer_sd.rstr", "H.960", "slope_mean.rstr", "SLOPE", "RUSLE", "ward")) %>% dplyr::rename(ward.grp = ward) %>% dplyr::mutate(RUSLE = log10(RUSLE)) %>% reshape2::melt(id.vars = "ward.grp") head(drivers_data)
We can now visualize the results from a pair-wise statistical comparison with significative_diff_boxplot()
.
Dunn_results <- significative_diff_boxplot(drivers_data, type = "Dunn", padjmeth = "bonferroni", pvalue = 0.10, no_label = TRUE) Dunn_results$p
As the boxplots might be difficult to read, the p-value can be recasted into a matrix form with plot_pairwise_pvalue()
.
plotly::ggplotly( plot_pairwise_pvalue(Dunn_results$stats), tooltip = c("group1", "group2", "p.value") )
We can repeat the above procedure for all data and visualize the results at the number of significant pairwise comparisons.
This time we select most data, removing the data with near-zero variance and the Indices of Catchment Integrity.
significative_count_lollipop()
produces a lollipop chart counting the number of significant pairwise comparison.
If normalize = TRUE
, the counts are normalized by the number of pairwise comparisons.
all_drivers_data <- cbind(SSCT_labelled_data, SSCT_data %>% dplyr::select("ward")) %>% dplyr::select(-caret::nearZeroVar(., names = TRUE)) %>% dplyr::select(-c("CHYD", "CCHEM", "CSED", "CCONN", "CTEMP", "CHABT", "ICI", "WHYD", "WCHEM", "WSED", "WCONN", "WTEMP", "WHABT")) %>% dplyr::select(-dplyr::contains("H.")) %>% dplyr::rename(ward.grp = ward) %>% dplyr::mutate(RUSLE = log10(RUSLE)) %>% reshape2::melt(id.vars = "ward.grp") %>% na.omit() Dunn_results <- significative_diff_boxplot(all_drivers_data, type = "Dunn", padjmeth = "bonferroni", pvalue = 0.10) significative_count_lollipop(Dunn_results, pvalue = 0.10, first = 15)$p %>% plotly::ggplotly() significative_count_lollipop(Dunn_results, pvalue = 0.10, normalize = TRUE, first = 15)$p %>% plotly::ggplotly()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.