Description Usage Arguments Value
View source: R/feature_importance.R
Compute feature importance
1 2 3 4 5 6 7 8 9 10 | feature_importance(
training_data,
target_colname,
filter_methods = c("FSelectorRcpp_information.gain"),
.iters = 500,
.first = 30,
.split = 0.8,
.stratify = TRUE,
.seed = 1789
)
|
training_data |
a 'data.frame' |
target_colname |
'character' the name of the column containing the target (output) |
filter_methods |
'list' of 'character' accepted by 'mlr::generateFilterValuesData()' |
.iters |
'numeric' number of iterations for the subsampling, default to 500 |
.first |
'numeric', number of feature to display, default to 30 |
.split |
'numeric', ratio of the subsampling splitting ratio, default to 0.8 |
.stratify |
'logical', should the subsampling be stratified, default to 'TRUE' |
.seed |
'numeric', fix seed for reproducible example |
a list with two elements a list of 'data.frame' for each method and a list of 'ggplot' objects
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.