#******* jags model of spline dose-response model with binomial likelihood for OR
modelBinSplineDRmetaORBiv <- function(){
for (i in 1:ns) { ## for each study
# binomial likelihood of number of events in the *refernce* dose level in a study i
r[i,1] ~ dbinom(p[i,1],n[i,1])
# logit parametrization of probabilities at each *refernce* dose level: by that exp(beta)= OR
logit(p[i,1]) <- u[i]
for (j in 2:(nd[i])) { ## for each dose
# binomial likelihood of number of events for the *non-refernce* dose in a study i
r[i,j] ~ dbinom(p[i,j],n[i,j])
# logit parametrization of probabilities at each *non-refernce* dose level: by that exp(beta)= OR
logit(p[i,j]) <- u[i] + delta[i,j]
delta[i,j] <- beta[i,1]*(X1[i,j]-X1[i,1]) + beta[i,2]*(X2[i,j]-X2[i,1])
}
}
#distribution of random effects
for(i in 1:ns) {
beta[i,1:2]~dmnorm(beta.pooled[1:2],inv.det*(tau.sq*idmat - cov*idmati))
u[i]~dnorm(0,0.001)
}
# for(i in 1:ns) {
# beta[i,1] ~dnorm(beta.pooled[1],prec.beta1)
# beta[i,2] ~dnorm(md[i],prec.beta2)
# md[i] <- beta.pooled[2]+ rho*(beta[i,1]-beta.pooled[1])
# u[i]~dnorm(0,0.001)
# }
# prior distribution for heterogenity
tau~ dnorm(0,1)%_%T(0,)
tau.sq <- tau^2
inv.det <- 1/(tau.sq^2 - cov.sq)
cov <- tau.sq*rho
rho ~ dunif(-1,1)
cov.sq <- cov^2
# prior distribution for both regression coeff beta1 and beta2
beta1.pooled <- beta.pooled[1]
beta2.pooled <- beta.pooled[2]
beta.pooled[1] ~ dnorm(0,0.001)
beta.pooled[2] ~ dnorm(0,0.001)
# # This part below is to obtain the absolute response over newdose range: 1 to 80, only for antidepressant not simulation
#
# for (i in 1:np) { ## for each study
# rr[i,1] ~ dbinom(p0[i],nn[i,1])
# logit(p0[i]) <- z[i]
# z[i] ~ dnorm(Z, prec.z)
# }
# # priors
# Z ~ dnorm(0, 0.001)
# prec.z <- 1/v.z
# v.z <- sigma.z * sigma.z
# sigma.z ~ dnorm(0,1)%_%T(0,)
#
# for( j in 1:nd.new){
# OR[j] <- exp(beta1.pooled*new.dose[j]+ beta2.pooled*f.new.dose[j])
# odds.drug[j] <- OR[j]*exp(Z)
# p.drug[j] <- odds.drug[j]/(1+odds.drug[j])
#
# }
# p.drug3020 <- step(p.drug[30]-p.drug[20])
# p.drug4030 <- step(p.drug[40]-p.drug[30])
}
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.