#******* jags model of spline dose-response model with binomial likelihood for RR
modelBinSplineDRmetaRR <- function(){
for (i in 1:ns) { ## for each study
# binomial likelihood of number of events in the *reference* dose level in a study i
r[i,1] ~ dbinom(p[i,1],n[i,1])
# log parametrization of probabilities at each *reference* dose level: by that exp(beta)= RR
log(p[i,1])<- u[i]
for (j in 2:(nd[i])) { ## for each dose
# binomial likelihood of number of events for the *non-refernce* dose in a study i
r[i,j] ~ dbinom(p[i,j],n[i,j])
# log parametrization of probabilities at each *non-refernce* dose level: by that exp(beta)= RR
log(p[i,j])<- u[i] + delta[i,j]
delta[i,j] <- beta1[i]*(X1[i,j]-X1[i,1]) + beta2[i]*(X2[i,j]-X2[i,1])#+beta3[i]*(X3[i,j]-X3[i,1])
}
}
# distribution of random effects
for(i in 1:ns) {
beta1[i]~dnorm(beta1.pooled,prec.beta)
beta2[i]~dnorm(beta2.pooled,prec.beta)
u[i]~dnorm(0,0.001)%_%T(,0)
}
# prior distribution for heterogenity
prec.beta<-1/variance
variance<-tau*tau
tau~ dnorm(0,1)%_%T(0,)
# prior distribution for both regression coeff beta1 and beta2
beta1.pooled ~ dnorm(0,0.001)
beta2.pooled ~ dnorm(0,0.001)
}
#
# for (i in 1:new.n) {
# newbeta1[i]~dnorm(beta1.pooled,prec.beta)
# newbeta2[i]~dnorm(beta2.pooled,prec.beta)
# newbeta3[i]~dnorm(beta3.pooled,prec.beta)
#
# newY[i] <-newbeta1[i]*new.dose1[i]+newbeta2[i]*new.dose2[i]+newbeta3[i]*new.dose3[i]
# newOR[i]<-exp(newY[i])
# }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.