#!!!! I didn't run inconsistency, discuss with Georgia
# libraries
library(R2jags)
# functions
source('data.prep.R') # prepare data
source('data.addROB.R')
source('data.addOR.R')
source('data.addFluxdose.R')
source('data.addclass.R')
source('net.structure.R') # jags model format
source('drnma.model.standardRE.R') # standard RE jags model
source('drnma.model.metareg.R') # metareg jags model
source('drnma.model.class.R') # class jags model
# data
antidep <- data.prep()
#-- Model1 - standard RE delta's --
# data
jagsdata_std <- net.structure(data=antidep)
# run model
drnma_RE <- jags.parallel(data = jagsdata_std,
inits=NULL,
parameters.to.save = c('beta1','beta2','g','tau.d','p.drug','resdev','rhat','totresdev','p.placebo','r','n'),
model.file = drnma.standardRE,
n.chains=3,n.iter = 10000,n.burnin = 4000,n.thin = 1,
DIC=F
)
save(drnma_RE,file='drnma_RE')
#-- Model1.2 - standard RE delta's sensitivity konts at 10, 20 and 30 % --
# data
jagsdata_std_sens <- net.structure(data=antidep,knot_probs=c(0.1,0.2,0.3))
# run model
drnma_RE_sens <- jags.parallel(data = jagsdata_std_sens,
inits=NULL,
parameters.to.save = c('beta1','beta2','g','tau.d','p.drug','resdev','rhat','totresdev','p.placebo','r','n'),
model.file = drnma.standardRE,
n.chains=3,n.iter = 10000,n.burnin = 4000,n.thin = 1,
DIC=F
)
save(drnma_RE_sens,file='drnma_RE_sens')
#-- Model2: metareg ROB --
# data
antidep_rob <- add_rob_study(data=antidep) # add ROB
jagsdata_rob <- net.structure(data=antidep_rob, # jags format
metareg=T,
cov.pred=0) # predictions at low RoB
# run model
drnma_rob <- jags.parallel(data = jagsdata_rob,
inits=NULL,
parameters.to.save = c('beta1','beta2','g','tau.d','p.drug','resdev','rhat','totresdev','p.placebo','r','n'),
model.file = drnma.metareg,
n.chains=3,n.iter = 10000,n.burnin = 4000,n.thin = 1,
DIC=F
)
save(drnma_rob,file='drnma_rob')
#-- Model3: metareg study_year --
# data
antidep_year <- antidep[!is.na(antidep$study_year),] # remove NA's
antidep_year$cov <- antidep_year$study_year-2010 # add centralized study_year
jagsdata_year <- net.structure(data=antidep_year, # jags format
metareg=T,
cov.pred=0 # predictions at 2010 year
)
# run model
drnma_year <- jags.parallel(data = jagsdata_year,inits=NULL,
parameters.to.save =c('beta1','beta2','g','tau.d','p.drug','resdev','rhat','totresdev','p.placebo','r','n'),
model.file = drnma.metareg,
n.chains=3,n.iter = 10000,n.burnin = 4000,n.thin = 1,
DIC=F)
save(drnma_year,file='drnma_year')
#-- Model4: metareg var logOR (small study effect) --
# data
antidep_var <- add_var(data=antidep)
cov.pred <- min(antidep_var$selogOR,na.rm = T)^2
jagsdata_var <- net.structure(data=antidep_var, # jags format
metareg=T,
cov.pred=cov.pred # predictions at min var
)
# run model
drnma_var <- jags.parallel(data = jagsdata_var,inits=NULL,
parameters.to.save =c('beta1','beta2','g','tau.d','p.drug','resdev','rhat','totresdev','p.placebo','r','n'),
model.file = drnma.metareg,
n.chains=3,n.iter = 10000,n.burnin = 4000,n.thin = 1,
DIC=F)
save(drnma_var,file='drnma_var')
#-- Model5: class --
# data
antidep_harmon <- data_with_fluxdose(data=antidep) # harmonize the doses
antidep_class <- data_with_class(antidep_harmon) # add class
jagsdata_class <- net.structure(data=antidep_class,class.effect = T) # jags format
# run model
drnma_class<- jags.parallel(data = jagsdata_class,inits=NULL,
parameters.to.save = c('beta1','beta2','tau.d','p.drug','dev','rhat','r','n','totresdev','p.placebo','resdev'),
model.file = drnma.class,
n.chains=3,n.iter = 10000,n.burnin = 4000,n.thin = 1,
DIC=F)
save(drnma_class, file='drnma_class')
#-- Model6 Inconsistency --
# run model
drnma_inconsisteny <- jags.parallel(data = jagsdata_std,inits=NULL,
parameters.to.save = c('b1','b2','bb1','bb2','gamma','g','tau','p.drug','dev','rhat','r','n','totresdev','p.placebo'),
model.file = jagsmodelDRnetmeta,
n.chains=3,n.iter = 10000,n.burnin = 4000,DIC=F,n.thin = 1)
save(drnma_inconsisteny,file='drnma_inconsisteny')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.