#' Recommended method for estimating the error variance
#'
#' \code{LPM_AIC_CV_50Split} estimates the error variance with the test set RMSE across 1000 data splits
#'
#' @param XMat a n by p numeric matrix
#' @param yVec a n by 1 numeric vector
#' @param numCV number of cross validation splits (default is 1000)
#'
#' The best way to understand how the function is to break apart the name.
#'
#' \itemize{
#' \item LPM: Largest Plausible Model
#' \item AIC: we choose the largest plausible model by minimizing AIC
#' \item CV: we find the LPM on the training set, and get RMSE from the test set
#' \item 50Split: we use a 50/50 split for the training/test set.
#' }
#'
#' This is very similar to the refitted cross validation method from \insertCite{fan2012variance}{MAIL}
#'
#' @importFrom Rdpack reprompt
#'
#'
#' @references
#' \insertRef{fan2012variance}{MAIL}
#'
#' @export
# help with references here:
# https://cran.r-project.org/web/packages/Rdpack/vignettes/Inserting_bibtex_references.pdf
LPM_AIC_CV_50Split = function(XMat,yVec,
numCV = 1000) {
N = dim(XMat)[1]
p = dim(XMat)[2]
expInds = sample(1:N,size=floor(N/2),replace=FALSE)
xExp = XMat[expInds,]
xCon = XMat[-1*expInds,]
yExp = yVec[expInds]
yCon = yVec[-1*expInds]
NExp = dim(xExp)[1]
pExp = dim(xExp)[2]
NCon = dim(xCon)[1]
pCon = dim(xCon)[2]
reRunSOIL_AIC = SOIL(x=xExp,y=yExp,family="gaussian",weight_type="AIC",
psi=0,method="union",
n_bound = floor(NCon*0.5) )
candMat_Exp = reRunSOIL_AIC$candidate_models_cleaned
modelWeight_AIC = reRunSOIL_AIC$weight
largestIndex = which.max(modelWeight_AIC)
largestModel = which(candMat_Exp[largestIndex,] != 0)
mseVec = rep(0,times=numCV)
for (i in 1:numCV) {
trainInds = sample(1:NCon,size=floor(0.9*NCon),replace=FALSE)
trainX = xCon[trainInds,largestModel] # which(candMat[maxInd,] != 0)]
trainY = yCon[trainInds]
#
testX = xCon[-1*trainInds,largestModel] #which(candMat[maxInd,] != 0)]
testY = yCon[-1*trainInds]
trainDF = data.frame(y = trainY)
trainDF = cbind(trainDF,trainX)
tempM = lm(y ~ .,data=trainDF)
testDF = as.data.frame(testX)
colnames(testDF) = colnames(trainDF)[-1]
tempPred = predict(tempM,newdata=testDF)
mseVec[i] = mean((testY - tempPred)^2,na.rm=TRUE)
}
estSigma2 = mean(mseVec)
return(estSigma2)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.