R/LPM_AIC_CV_90Split.R

Defines functions LPM_AIC_CV_90Split

LPM_AIC_CV_90Split = function(XMat,yVec) {
  N = dim(XMat)[1]
  p = dim(XMat)[2]
  
  expInds = sample(1:N,size=floor(0.9*N),replace=FALSE)
  
  xExp = XMat[expInds,]
  xCon = XMat[-1*expInds,]
  
  yExp = yVec[expInds]
  yCon = yVec[-1*expInds]
  
  NExp = dim(xExp)[1]
  pExp = dim(xExp)[2]
  
  NCon = dim(xCon)[1]
  pCon = dim(xCon)[2]
  
  reRunSOIL_AIC = SOIL(x=xExp,y=yExp,family="gaussian",weight_type="AIC",
                       psi=0,method="union",
                       n_bound = floor(NCon*0.5))
  candMat_Exp = reRunSOIL_AIC$candidate_models_cleaned
  modelWeight_AIC = reRunSOIL_AIC$weight
  largestIndex = which.max(modelWeight_AIC)
  largestModel = which(candMat_Exp[largestIndex,] != 0)
  
  numCV = 1000
  mseVec = rep(0,times=numCV)
  for (i in 1:numCV) {
    trainInds = sample(1:NCon,size=floor(0.9*NCon),replace=FALSE)
    trainX = xCon[trainInds,largestModel] # which(candMat[maxInd,] != 0)]
    trainY = yCon[trainInds]
    
    #
    testX = xCon[-1*trainInds,largestModel] #which(candMat[maxInd,] != 0)]
    if (is.null(dim(testX))) {
      testX = matrix(testX,nrow=1)
    }
    
    testY = yCon[-1*trainInds]
    
    trainDF = data.frame(y = trainY)
    trainDF = cbind(trainDF,trainX)
    
    tempM = lm(y ~ .,data=trainDF)
    testDF = as.data.frame(testX)
    
    colnames(testDF) = colnames(trainDF)[-1]
    tempPred = predict(tempM,newdata=testDF)
    
    mseVec[i] = mean((testY - tempPred)^2,na.rm=TRUE)
  }
  estSigma2 = mean(mseVec)
  return(estSigma2)
}
hwyneken/MAILPackage documentation built on July 27, 2022, 12:46 a.m.