predict_edges | R Documentation |
predict_edges()
uses a hierarchical random graph model to predict
missing edges from a network. This is done by sampling hierarchical models
around the optimum model, proportionally to their likelihood. The MCMC
sampling is stated from hrg()
, if it is given and the start
argument is set to TRUE
. Otherwise a HRG is fitted to the graph
first.
predict_edges(
graph,
hrg = NULL,
start = FALSE,
num.samples = 10000,
num.bins = 25
)
graph |
The graph to fit the model to. Edge directions are ignored in directed graphs. |
hrg |
A hierarchical random graph model, in the form of an
|
start |
Logical, whether to start the fitting/sampling from the
supplied |
num.samples |
Number of samples to use for consensus generation or missing edge prediction. |
num.bins |
Number of bins for the edge probabilities. Give a higher number for a more accurate prediction. |
A list with entries:
The predicted edges, in a two-column matrix of vertex ids.
Probabilities of these edges, according to the fitted model.
The (supplied or fitted) hierarchical random graph model.
A. Clauset, C. Moore, and M.E.J. Newman. Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008);
A. Clauset, C. Moore, and M.E.J. Newman. Structural Inference of Hierarchies in Networks. In E. M. Airoldi et al. (Eds.): ICML 2006 Ws, Lecture Notes in Computer Science 4503, 1–13. Springer-Verlag, Berlin Heidelberg (2007).
Other hierarchical random graph functions:
consensus_tree()
,
fit_hrg()
,
hrg()
,
hrg-methods
,
hrg_tree()
,
print.igraphHRG()
,
print.igraphHRGConsensus()
,
sample_hrg()
## A graph with two dense groups
g <- sample_gnp(10, p = 1 / 2) + sample_gnp(10, p = 1 / 2)
hrg <- fit_hrg(g)
hrg
## The consensus tree for it
consensus_tree(g, hrg = hrg, start = TRUE)
## Prediction of missing edges
g2 <- make_full_graph(4) + (make_full_graph(4) - path(1, 2))
predict_edges(g2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.