## chapter_08-MultipleRegression.R
#
# This file contains all code examples from chapter 8 in
# Mehmetoglu & Mittner (2021). Applied Statistics Using R. SAGE.
##
## setup
library(tidyverse)
library(astatur)
theme_set(theme_astatur())
## -- Example 1
#
library(astatur)
model2 <- lm(Present_Value ~ Attractiveness + Kindness + Age,
data=present)
## -- Example 2
#
summary(model2)
## -- Example 3
#
confint(model2)
## -- Example 4
#
library(lm.beta)
lm.beta(model2)
## -- Example 5
#
vimp(model2)
## -- Example 6
#
present_z <- data.frame(scale(present))
model3 <- lm(Present_Value ~ Attractiveness + Kindness + Age,
data= present_z)
summary(model3)
## -- Example 7
#
confint(model3)
## -- Example 8
#
library(multcomp)
comp1 <- glht(model3, linfct=c("Attractiveness - Kindness = 0"))
summary(comp1)
comp2 <- glht(model3, linfct=c("Attractiveness - Age = 0"))
summary(comp2)
comp3 <- glht(model3, linfct=c("Kindness - Age = 0"))
summary(comp3)
## -- Example 9
#
library(relaimpo)
calc.relimp(model2, type="last")
## -- Example 10
#
xsvals <- data.frame(Attractiveness=7, Kindness=7, Age=50)
predval <- predict(model2, newdata = xsvals,
interval = "confidence", level = 0.95)
xsvals_pval <- cbind(xsvals, predval)
xsvals_pval
## -- Example 11
#
xsvals2 <- data.frame(Attractiveness=c(1,2,3,4,5,6,7),
Kindness=mean(present$Kindness),
Age=mean(present$Age))
predval2 <- predict(model2, newdata = xsvals2,
interval = "confidence", level = 0.95)
xsvals_pval2 <- cbind(xsvals2, predval2)
xsvals_pval2
## -- Example 12
#
library(ggplot2)
ggplot(xsvals_pval2, aes(x=Attractiveness, y=fit)) +
geom_smooth(aes(ymin = lwr, ymax = upr),
stat = "identity")
## -- Example 13
#
library(stargazer)
stargazer(model2, ci=TRUE, type="text",
keep.stat=c("n", "rsq"),
out="model2.txt")
## -- Example 14
#
plot(model2)
## -- Example 15
#
library(performance)
check_model(model2)
## -- Example 16
#
regression.diagnostics(model2)
## -- Example 17
#
present2 <- present %>%
add_row(Present_Value=20000, Attractiveness=1,
Kindness=7, Age=100)
model2b <- lm(Present_Value ~ Attractiveness + Kindness + Age,
data=present2)
regression.diagnostics(model2b)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.