double_cox_longevity2: double_cox_longevity2

Description Usage Arguments Details Value Examples

View source: R/double_cox_longevity2.r

Description

This function loads a file as a data frame of clients and fits parametric survival model

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
double_cox_longevity2(
  data,
  dist,
  cluster,
  formula.shape,
  formula.scale,
  age_of_diagnosis,
  time_past_from_diagnosis,
  working_directory,
  name_for_age_factor = NULL
)

Arguments

data

given data frame of clients

dist

distribution either Weibull or Gompertz

cluster

The name of the covariate defining the random effect (is equal to NULL for the fixed-effect model);

formula.shape

The object defining the fields for covariates influencing the shape.

formula.scale

The formula object defining the fields for time-to-failure (or time-of-start and time-to-failure) and for covariates influencing the proportional hazard term;

age_of_diagnosis

age of diagnosis for a particular condition

time_past_from_diagnosis

time past diagnosis

working_directory

the working directory for any data that is produced from the functions to be saved in a folder

name_for_age_factor

the name of continuous age covariate

Details

This method fits the Double Cox regression to the provided data and using the hazard ratios from scale and shape parameters it calculates the life expectancies for all combination of given categorical variables

Value

data frame with life expectancies for given data frame of clients

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#set.seed(1)
#n<-10000
#clinic<-as.factor(round(runif(n, min = 1, max = 1000)))###suppose we have 200 clinic
#gender <- c(rep('M',times=n/2),rep('F',times=n/2))
#townsend <- as.factor(round(runif(n, min = 1, max = 5)))
#smokerCategory <- as.factor(round(runif(n, min = 1, max = 3)))
#HTN_diag_treat  <- as.factor(round(runif(n, min = 1, max = 3)))
#diabetes  <- as.factor(round(runif(n, min = 0, max = 1)))
#hypercholesterolaemia <- as.factor(round(runif(n, min = 0, max = 1)))
#bmiCategory <- as.factor(round(runif(n, min = 1, max = 3)))
#age_cat<- as.factor(round(runif(n, min = 1, max = 3)))
#birth_cohort<- as.factor(round(runif(n, min = 0, max = 3)))
#cvd_risk <- as.factor(round(runif(n, min = 0, max = 2)))
#statins <- as.factor(round(runif(n, min = 0, max = 1)))
#aspirin<-as.factor(round(runif(n, min = 0, max = 1)))
#age_c<-rnorm(n,mean=70, sd=10)
#Tstart<-rep(60, times=n)
#Tstop<-abs(rnorm(n,mean=70,sd= 6))
#death<-sample(c(0,1), replace=TRUE, size=n)
#T_start_indicator <- "Tstart"
#T_stop_indicator <-  "Tstop"
#status_indicator <-  "death"
#working_directory<-"E:/Documentation for R package/"
#data<-data.frame(clinic,statins,age_c,birth_cohort,cvd_risk,diabetes,HTN_diag_treat,hypercholesterolaemia,bmiCategory,age_cat,smokerCategory,townsend,aspirin,Tstart,Tstop,death)
#data <- subset(data, Tstop>Tstart) #removing observations where Tstop happened before Tstart
#age_of_diagnosis<-60 ##age at diagnosis
#time_past_from_diagnosis<-5 ## time from diagnosis
#cluster="clinic"
#dist="Weibull"
#formula.scale=as.formula("survival::Surv(Tstart,Tstop,death)~birth_cohort+age_c+HTN_diag_treat+smokerCategory")
#formula.shape=as.formula("survival::Surv(Tstart,Tstop, death) ~birth_cohort")
#double_cox_longevity2(data, dist, cluster, formula.shape, formula.scale,age_of_diagnosis,time_past_from_diagnosis,working_directory,name_for_age_factor="age_c")

ilyasstatistics/mylongevity documentation built on Aug. 28, 2021, 4:51 p.m.