| constructors | R Documentation |
Constructor of the class scRNAseq.
singlecellRNAseq(experimentName, countMatrix, species, outputDirectory,
tSNElist=list(new("Tsne")), dbscanlist=list(new("Dbscan")),
cellSimMat= matrix(nrow = 1, ncol = 1, dimnames = list("c1", "c1"),
data = 1), clustSimMat=matrix(nrow = 1, ncol = 1, dimnames = list("1", "1"),
data = 1), clustSimOrdered=factor(1), markgenlist=list(data.frame(
Gene = c("gene1"), mean_log10_fdr = c(NA), n_05 = c(NA), score = c(NA))),
clustMark=data.frame(geneName="gene1", clusters=NA), genesInf = data.frame(
uniprot_gn_symbol=c("symbol"), clusters="1", external_gene_name="gene",
go_id="GO1,GO2", mgi_description="description",
entrezgene_description="descr", gene_biotype="gene", chromosome_name="1",
Symbol="symbol", ensembl_gene_id="ENS", mgi_id="MGI", entrezgene_id="1",
uniprot_gn_id="ID"))
TsneCluster(name, pc, perplexity, coordinates)
DbscanCluster(name, epsilon, minPoints, clustering)
experimentName |
Character string representing the name of the experiment. |
countMatrix |
An integer matrix representing the raw count matrix with reads or unique molecular identifiers (UMIs). |
species |
Character string representing the species of interest. Currently limited to "mouse" and "human". Other organisms can be added on demand. |
outputDirectory |
A character string of the path to the root output folder. |
tSNElist |
List of 'Tsne' objects representing the different tSNE coordinates generated by CONCLUS. |
dbscanlist |
List of 'Dbscan' objects representing the different Dbscan clustering generated by CONCLUS. |
cellSimMat |
A numeric Matrix defining how many times two cells have been associated to the same cluster across the 84 solutions (by default) of clustering. |
clustSimMat |
A numeric matrix comparing the robustness of the consensus clusters. |
clustSimOrdered |
A factor representing the clusters ordered by similarity. |
markgenlist |
List of data.frames. Each data frame contains the ranked genes of one cluster. |
clustMark |
A data frame containing the top 10 (by default) marker genes of each clusters. |
genesInf |
A data frame containing informations of the markers genes for each clusters. |
name |
A 'character' string representing the name of the Dbscan clustering. |
pc |
A 'numeric' value representing the number of principal components used by CONCLUS to perfom a PCA before calculating the tSNE. |
perplexity |
A 'numeric' vector. Default: c(30, 40) |
coordinates |
A 'numeric' matrix that contains the coordinates of one tSNE solution. |
epsilon |
A 'numeric' vector. The epsilon is the distance to consider two points belonging to the same cluster. Default = c(1.3, 1.4, 1.5) |
minPoints |
A 'numeric' value. The minPoints is the minimum number of points to construct a cluster. |
clustering |
A 'matrix' that contains the result of one DBSCAN clustering solution. |
Object of class scRNAseq
Object of class Tsne
Object of class Dbscan
scRNAseq-class
Tsne-class
Dbscan-class
experimentName <- "Bergiers"
outputDirectory <- "YourOutputDirectory"
## Load the count matrix
countmatrixPath <- system.file("extdata/countMatrix.tsv", package="conclus")
countMatrix <- loadDataOrMatrix(file=countmatrixPath, type="countMatrix",
ignoreCellNumber=TRUE)
## Load the coldata
coldataPath <- system.file("extdata/colData.tsv", package="conclus")
columnsMetaData <- loadDataOrMatrix(file=coldataPath, type="coldata",
columnID="cell_ID")
## Create the initial object
scr <- singlecellRNAseq(experimentName = experimentName,
countMatrix = countMatrix,
species = "mouse",
outputDirectory = outputDirectory)
mat <- matrix(seq_len(20), ncol=2)
colnames(mat) <- c("X", "Y")
TsneCluster(name = "test", pc = 30, perplexity = 4,
coordinates = mat)
DbscanCluster("test", 0.5, 2, matrix(1:10))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.