#' Determine model fit of CTREE tree
#'
#' \code{ctree_fit} A function to gauge the fit of a model run of an CTREE tree,
#' given parameters. This is a function that is used to fine-tune the CTREE tree
#' when forecasting
#'
#' @param ML_data Dataset that has been prepared to run through CTREE. If
#' originally a time series object, then it has gone through the
#' \code{decompose_ts_object_for_ML} function and the first difference of the
#' column of interest has been taken
#' @param minsplit CTREE parameter. The minimum number of observations that must
#' exist in a node in order for a split to be attempted (default from CTREE =
#' 20)
#' @param mincriterion CTREE parameter. The value of the test-statistic
#' (\code{testtype} == "Teststatistic") or 1 - p-value that must be exceeded
#' in order to implement a split (default from CTREE = 0.95)
#' @param minbucket CTREE parameter. Minimum sum of weights in a terminal node
#' (default from CTREE = 7)
#' @param testtype CTREE parameter. Which distribution to use. Options are
#' "Bonferroni", "MonteCarlo", "Univariate" and "Teststatistic"
#' @param teststat CTREE parameter. Specifies which test statistic to use when
#' doing hypothesis testing. Options are "quad" and "max"
#' @param nresample CTREE parameter. Amount of resampling to do when MonteCarlo
#' is selected as test type (default from CTREE = 9999)
#'
#' @return The mean absolute prediction error (MAPE), in percentage terms, of
#' the model run
#'
#' @importFrom magrittr '%>%'
#' @import party
#' @import dplyr
#' @importFrom tstools transform_data_to_ts_object
#'
#' @examples
#' ML_data <- tstools::initialize_ts_forecast_data(
#' data = dummy_gasprice,
#' date_col = "year_month",
#' col_of_interest = "gasprice",
#' group_cols = c("state", "oil_company"),
#' xreg_cols = c("spotprice", "gemprice")
#' ) %>%
#' dplyr::filter(grouping == "state = New York & oil_company = CompanyA") %>%
#' tstools::transform_data_to_ts_object() %>%
#' decompose_ts_object_for_ML(filter_date_features = T) %>%
#' dplyr::mutate(col_of_interest = col_of_interest - dplyr::lag(col_of_interest)) %>%
#' dplyr::filter(!is.na(col_of_interest))
#' ctree_fit(
#' ML_data = ML_data,
#' minsplit = 20,
#' mincriterion = 0.975,
#' minbucket = 5,
#' testtype = "Univariate",
#' teststat = "quad",
#' nresample = 9999
#' )
ctree_fit <- function(ML_data, minsplit, mincriterion, minbucket, testtype = c("Bonferroni", "MonteCarlo", "Univariate", "Teststatistic"), teststat = c("quad", "max"), nresample = 9999) {
# Check input
testtype <- match.arg(testtype)
teststat <- match.arg(teststat)
# Run CTREE tree regression
ctree_init <- party::ctree(
formula = col_of_interest ~ .,
data = ML_data,
controls = party::ctree_control(
minsplit = minsplit,
mincriterion = mincriterion,
minbucket = minbucket,
testtype = testtype,
teststat = teststat,
nresample = nresample
)
)
# Exclude col_of_interest for fitting data
fit_data <- ML_data %>%
dplyr::select(-col_of_interest)
# Get fitted values
ctree_fitted <- predict(ctree_init, fit_data)
# Calculate MAPE and return
num <- mean(abs(ML_data$col_of_interest - ctree_fitted))
denom <- mean(abs(ML_data$col_of_interest))
ctree_mape <- ifelse(num == 0,
0,
100*(num/denom))
# Return mape only
return(ctree_mape)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.