Description Usage Arguments Value Examples
Fits SLIDE model for X using the pre-specified structure S.
1 2 3 4 5 6 7 8 9 | slide_givenS(
X,
pvec,
S,
Ustart = NULL,
eps = 1e-06,
k_max = 1000,
standardized = F
)
|
X |
A n x p concatenated data matrix of views X_1,...,X_d. |
pvec |
A vector of values p_1,....,p_d corresponding to the number of measurements within each view. |
S |
A binary matrix with nonzero columns of size d x r. |
Ustart |
An n X r optional starting value for U, if not supplied the first r left singular vectors of X are used. |
eps |
A convergence tolerance criterion, the default value is 1e-6. |
k_max |
A maximal number of allowable iterations, the default values is 1000. |
standardized |
A logical indicator of whether X is centered and standardized. The default value is FALSE and the standardization is performed within the function. |
A list with the elements
U |
A n x r score matrix for the SLIDE model. |
V |
A p x r loadings matrix for the SLIDE model with sparsity pattern according to S. |
error |
Tolerance value at convergence. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | n = 100
p1 = 25
p2 = 25
data = generateModel1(n = n, pvec = c(p1, p2))
# Specify binary structure
S = matrix(c(1,1,0,1,0,1),nrow = 2, ncol = 3)
# Unstandardized
fit_slide = slide_givenS(data$X, pvec = c(p1,p2), S = S)
# Standardized
out = standardizeX(data$X, pvec = c(p1,p2))
fit_slide = slide_givenS(out$X, pvec = c(p1,p2), S = S, standardized = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.