Description Usage Arguments Value Examples
Fits SLIDE model for X using the pre-specified structure S.
| 1 2 3 4 5 6 7 8 9 | slide_givenS(
  X,
  pvec,
  S,
  Ustart = NULL,
  eps = 1e-06,
  k_max = 1000,
  standardized = F
)
 | 
| X | A n x p concatenated data matrix of views X_1,...,X_d. | 
| pvec | A vector of values p_1,....,p_d corresponding to the number of measurements within each view. | 
| S | A binary matrix with nonzero columns of size d x r. | 
| Ustart | An n X r optional starting value for U, if not supplied the first r left singular vectors of X are used. | 
| eps | A convergence tolerance criterion, the default value is 1e-6. | 
| k_max | A maximal number of allowable iterations, the default values is 1000. | 
| standardized | A logical indicator of whether X is centered and standardized. The default value is FALSE and the standardization is performed within the function. | 
A list with the elements
| U | A n x r score matrix for the SLIDE model. | 
| V | A p x r loadings matrix for the SLIDE model with sparsity pattern according to S. | 
| error | Tolerance value at convergence. | 
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | n = 100
p1 = 25
p2 = 25
data = generateModel1(n = n, pvec = c(p1, p2))
# Specify binary structure
S = matrix(c(1,1,0,1,0,1),nrow = 2, ncol = 3)
# Unstandardized
fit_slide = slide_givenS(data$X, pvec = c(p1,p2), S = S)
# Standardized
out = standardizeX(data$X, pvec = c(p1,p2))
fit_slide = slide_givenS(out$X, pvec = c(p1,p2), S = S, standardized = TRUE)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.