Description Usage Arguments Value See Also
View source: R/estimate_model.R
todo: explain
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | estimate_model(
control_arr,
diagnosed_arr,
dim_alpha = 1,
LinkFunc = LinkFunctions$multiplicative_identity,
model_reg_config = list(),
matrix_reg_config = list(),
iid_config = list(),
cov_config = list(),
raw_start = FALSE,
bias_correction = FALSE,
early_stop = FALSE,
verbose = TRUE
)
|
control_arr |
array of control group correlation matrices. either an array or data matrix form |
diagnosed_arr |
array of diagnosed group correlation matrices. either an array or data matrix form |
dim_alpha |
the number of columns in alpha. default 1 |
LinkFunc |
a list of function. must include func, inverse, rev_func and null_value. see LinkFuncSkeleton |
model_reg_config |
see configurations. arguments passed will override the defaults. |
matrix_reg_config |
see configurations. arguments passed will override the defaults. |
iid_config |
list of two lists named 'iter_config' and 'optim_config', for the optimization of the model with identity matrix covariance matrix. see configurations. arguments passed will override the defaults. |
cov_config |
list of two lists named 'iter_config' and 'optim_config', for the optimization of the model with a specified covariance matrix. see configurations. arguments passed will override the defaults. |
raw_start |
if true, don't optimize with the identity matrix before optimizing with a specified covariance matrix |
bias_correction |
if true, correct the estimates to the median: a' = a - med(a) + null_value |
early_stop |
if true, stop the optimization of the joint loss function (of theta and alpha) didn't decrease in the last iteration. |
verbose |
if true, print status to console |
a list of the following:
theta: a matrix, the estimates of theta
alpha: a matrix, the estimates of alpha
LinkFunc: the link function used same as the parameter LinkFunc
regularization: the same as model_reg_config parameter
vcov: the weighting matrix used in the optimization - the inverse of the correlations' covariance matrix
convergence: a vector with the convergence in each iteration. see optim
steps: the estimates of theta, alpha in each iteration
log_optim: if optim_config$log_optim=TRUE, will return the output of optim for each iteration. else, NA.
configurations
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.