Description Usage Arguments Value See Also
View source: R/estimate_model_jacknife.R
todo: explain
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | estimate_model_jacknife(
control_arr,
diagnosed_arr,
dim_alpha = 1,
alpha0 = NULL,
theta0 = NULL,
LinkFunc = LinkFunctions$multiplicative_identity,
model_reg_config = list(),
matrix_reg_config = list(),
iid_config = list(iter_config = list(minit = 0)),
cov_config = list(),
return_gee = FALSE,
jack_control = TRUE,
bias_correction = FALSE,
early_stop = FALSE,
verbose = TRUE,
ncores = 1
)
|
control_arr |
array of control group correlation matrices. either an array or data matrix form |
diagnosed_arr |
array of diagnosed group correlation matrices. either an array or data matrix form |
dim_alpha |
the number of columns in alpha. default 1 |
alpha0 |
starting point for alpha in the optimization. if null (the default), will use LinkFunc$null_value |
theta0 |
starting point for alpha in the optimization. if null (the default), will the average matrix of all subjects |
LinkFunc |
a list of function. must include func, inverse, rev_func and null_value. see LinkFuncSkeleton |
model_reg_config |
see configurations. arguments passed will override the defaults. |
matrix_reg_config |
see configurations. arguments passed will override the defaults. |
iid_config |
list of two lists named 'iter_config' and 'optim_config', for the optimization of the model with identity matrix covariance matrix. see configurations. arguments passed will override the defaults. |
cov_config |
list of two lists named 'iter_config' and 'optim_config', for the optimization of the model with a specified covariance matrix. see configurations. arguments passed will override the defaults. |
return_gee |
if true, calculate the gee estimate of variance in each jackknife |
jack_control |
if false, don't jackknife control subjects |
bias_correction |
if true, correct the estimates to the median: a' = a - med(a) + null_value |
early_stop |
if true, stop the optimization of the joint loss function (of theta and alpha) didn't decrease in the last iteration. |
verbose |
if true, print status to console |
ncores |
number of cores to use in parallel |
a list of the following:
theta: a matrix, the estimates of theta from each jackknife iteration vectorized
alpha: a matrix, the estimates of alpha from each jackknife iteration vectorized
gee_var: if return_gee=TRUE, an array of the gee estimate of variance from each jackknife iteration
convergence: a matrix consisting of vectors with the convergence in each iteration. see optim
is_diagnosed: a vector with 0,1 indicating of a control or diagnosed subjet was omitted in the iteration
LinkFunc: the link function used same as the parameter LinkFunc
regularization: the same as model_reg_config parameter
estimate_model
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.