estimate_model_jacknife: Jackknife Estimation of Model

Description Usage Arguments Value See Also

View source: R/estimate_model_jacknife.R

Description

todo: explain

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
estimate_model_jacknife(
  control_arr,
  diagnosed_arr,
  dim_alpha = 1,
  alpha0 = NULL,
  theta0 = NULL,
  LinkFunc = LinkFunctions$multiplicative_identity,
  model_reg_config = list(),
  matrix_reg_config = list(),
  iid_config = list(iter_config = list(minit = 0)),
  cov_config = list(),
  return_gee = FALSE,
  jack_control = TRUE,
  bias_correction = FALSE,
  early_stop = FALSE,
  verbose = TRUE,
  ncores = 1
)

Arguments

control_arr

array of control group correlation matrices. either an array or data matrix form

diagnosed_arr

array of diagnosed group correlation matrices. either an array or data matrix form

dim_alpha

the number of columns in alpha. default 1

alpha0

starting point for alpha in the optimization. if null (the default), will use LinkFunc$null_value

theta0

starting point for alpha in the optimization. if null (the default), will the average matrix of all subjects

LinkFunc

a list of function. must include func, inverse, rev_func and null_value. see LinkFuncSkeleton

model_reg_config

see configurations. arguments passed will override the defaults.

matrix_reg_config

see configurations. arguments passed will override the defaults.

iid_config

list of two lists named 'iter_config' and 'optim_config', for the optimization of the model with identity matrix covariance matrix. see configurations. arguments passed will override the defaults.

cov_config

list of two lists named 'iter_config' and 'optim_config', for the optimization of the model with a specified covariance matrix. see configurations. arguments passed will override the defaults.

return_gee

if true, calculate the gee estimate of variance in each jackknife

jack_control

if false, don't jackknife control subjects

bias_correction

if true, correct the estimates to the median: a' = a - med(a) + null_value

early_stop

if true, stop the optimization of the joint loss function (of theta and alpha) didn't decrease in the last iteration.

verbose

if true, print status to console

ncores

number of cores to use in parallel

Value

a list of the following:

See Also

estimate_model


itamarfaran/corrpops documentation built on Dec. 20, 2021, 8:02 p.m.