Description Usage Arguments Value Examples
View source: R/assessAccuracy.R
Function to assess the accuracy criterion for CPUE and abundance
1 | assess.accuracy(ts_mat, N_vec, sig_vec, q_bar, sd_q, acc_lev, A, n_mc = 100)
|
ts_mat |
A matrix specifying the transect/set arrangement. Columns represent transects while rows represent sets. Eg: cbind(c(T,T,T,F),c(T,T,F,F),c(T,T,T,T)) |
N_vec |
A numerical vector specifying the "true" mean abundance |
sig_vec |
A numerical vector specifying the between transect log scale standard deviation |
q_bar |
The estimate of the catchability coefficient |
sd_q |
An estimate of the standard deviation of the catchability coefficient |
acc_lev |
A vector of length two giving the prescribed levels of accuracy for CPUE and N respectively. |
A |
The area of the lake (in XX) |
n_mc |
The number of times to run the Monte Carlo simulation |
Returns a matrix giving the percentage of the time that the estimate is within acc_lev percent of the true value. The rows of the matrix coorespond to the entries in N_vec while the columns coorespond to entries in sig_vec.
1 2 3 4 5 6 7 8 9 10 | load("S:/Jordy/louiseOP2020/Data/lakelines.Rdata") # Load Lake Louise lakelines
n_max <- 492
ts_mat <- pick.coords(lakelines, n_max)$ts_mat
N_vec <- seq(1000, 10000, by=1000)
sig_vec <- seq(.1, 1, by=.1)
q_bar <- 0.6478999
sd_q <- 0.07966257
A <- 6519
acc_lev <- c(0.3, 0.3)
assess.accuracy(ts_mat, N_vec, sig_vec, q_bar, sd_q, acc_lev, A)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.