assess.accuracy: Function to assess the accuracy criterion for CPUE and...

Description Usage Arguments Value Examples

View source: R/assessAccuracy.R

Description

Function to assess the accuracy criterion for CPUE and abundance

Usage

1
assess.accuracy(ts_mat, N_vec, sig_vec, q_bar, sd_q, acc_lev, A, n_mc = 100)

Arguments

ts_mat

A matrix specifying the transect/set arrangement. Columns represent transects while rows represent sets. Eg: cbind(c(T,T,T,F),c(T,T,F,F),c(T,T,T,T))

N_vec

A numerical vector specifying the "true" mean abundance

sig_vec

A numerical vector specifying the between transect log scale standard deviation

q_bar

The estimate of the catchability coefficient

sd_q

An estimate of the standard deviation of the catchability coefficient

acc_lev

A vector of length two giving the prescribed levels of accuracy for CPUE and N respectively.

A

The area of the lake (in XX)

n_mc

The number of times to run the Monte Carlo simulation

Value

Returns a matrix giving the percentage of the time that the estimate is within acc_lev percent of the true value. The rows of the matrix coorespond to the entries in N_vec while the columns coorespond to entries in sig_vec.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
load("S:/Jordy/louiseOP2020/Data/lakelines.Rdata") # Load Lake Louise lakelines
n_max <- 492
ts_mat <- pick.coords(lakelines, n_max)$ts_mat
N_vec <- seq(1000, 10000, by=1000) 
sig_vec <- seq(.1, 1, by=.1)
q_bar <- 0.6478999
sd_q <- 0.07966257
A <- 6519
acc_lev <- c(0.3, 0.3)
assess.accuracy(ts_mat, N_vec, sig_vec, q_bar, sd_q, acc_lev, A)

jBernardADFG/LakeLouiseBurbotOP2020 documentation built on March 25, 2020, 12:06 a.m.