autoGBM: autoGBM

Description Usage Arguments Examples

Description

auto train GBM using pre-defined strategies

Usage

1
autoGBM(training_frame, validation_frame, x, y)

Arguments

x

independent variables

y

dependent variable

data_hex

H2ODataFrame

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
library(rAutoML)
library(h2o)
h2o.init()
data(churn, package = "rAutoML")
data_hex <- as.h2o(churn)
split_hex <- h2o.splitFrame(data = data_hex, ratios = c(0.5,0.3), seed = 1234)
train_hex <- split_hex[[1]]
valid_hex <- split_hex[[2]]
test_hex <- split_hex[[3]]
y = "Churn."
x = colnames(data_hex)[colnames(data_hex)!=y]
autoGBM_list <- autoGBM(training_frame=train_hex, validation_frame_valid_hex, x=x, y=y)

jacobgreen1984/rAutoML documentation built on May 13, 2019, 1:35 p.m.