# title : gbm5_bayesian_w_stoppingRules
# author : jacob
# desc : https://a-ghorbani.github.io/2016/11/24/data-science-with-h2o
# bayesGridSearch
set.seed(1234)
bayesGridSearch <- rBayesianOptimization::BayesianOptimization(
FUN = bayes_gbm,
bounds = lapply(grid_options(algo="gbm"), range),
init_points = 10,
n_iter = 5,
acq = "ucb",
kappa = 2.576,
eps = 0.0,
verbose = TRUE
)
# gbm5_bayesian_w_stoppingRules
gbm5_bayesian_w_stoppingRules <- h2o.gbm(
x = x,
y = y,
seed = 1234,
training_frame = train_hex,
validation_frame = valid_hex,
max_depth = as.numeric(bayesGridSearch$Best_Par["max_depth"]),
learn_rate = as.numeric(bayesGridSearch$Best_Par["learn_rate"]),
sample_rate = as.numeric(bayesGridSearch$Best_Par["sample_rate"]),
col_sample_rate = as.numeric(bayesGridSearch$Best_Par["col_sample_rate"]),
stopping_rounds = stopping_rules$stopping_rounds,
stopping_metric = stopping_rules$stopping_metric,
stopping_tolerance = stopping_rules$stopping_tolerance,
score_each_iteration = stopping_rules$score_each_iteration,
ntrees = stopping_rules$ntrees,
model_id = "gbm5",
verbose = TRUE
)
cat(">> gbm5 done! \n")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.