title: "Snow crab Areal unit modelling" author: "Jae S. Choi" toc: true number-sections: true highlight-style: pygments editor: render-on-save: false format: html: code-fold: true html-math-method: katex self-contained: true pdf: pdf-engine: lualatex docx: default
The snow crab biomass index is derived from the convolution of three separate Bayesian spatiotemporal model solutions via posterior simulation. This is completed through the carstm front-end to INLA, used to perform "non-separable" spatial Conditional autocorrelation (CAR) and temporal (AR1) models.
The convolution of all three after posterior simulation is also known as a Hurdle or Delta model.
require(aegis)
require(bio.snowcrab) # loadfunctions("bio.snowcrab")
year.start = 1999
year.assessment = 2023
yrs = year.start:year.assessment
spec_bio = bio.taxonomy::taxonomy.recode( from="spec", to="parsimonious", tolookup=2526 )
snowcrab_filter_class = "fb" # fishable biomass (including soft-shelled ) "m.mat" "f.mat" "imm"
carstm_model_label= paste( "default", snowcrab_filter_class, sep="_" )
# params for number
pN = snowcrab_parameters(
project_class="carstm",
yrs=yrs,
areal_units_type="tesselation",
carstm_model_label= carstm_model_label,
selection = list(
type = "number",
biologicals=list( spec_bio=spec_bio ),
biologicals_using_snowcrab_filter_class=snowcrab_filter_class
)
)
# params for mean size .. mostly the same as pN
pW = snowcrab_parameters(
project_class="carstm",
yrs=yrs,
areal_units_type="tesselation",
carstm_model_label= carstm_model_label,
selection = list(
type = "meansize",
biologicals=list( spec_bio=spec_bio ),
biologicals_using_snowcrab_filter_class=snowcrab_filter_class
)
)
# params for probability of observation
pH = snowcrab_parameters(
project_class="carstm",
yrs=yrs,
areal_units_type="tesselation",
carstm_model_label= carstm_model_label,
selection = list(
type = "presence_absence",
biologicals=list( spec_bio=spec_bio ),
biologicals_using_snowcrab_filter_class=snowcrab_filter_class
)
)
# areal units upon which carstm will operate ... this is made in 01.snowcrab.r
sppoly=areal_units( p=pN )
pN$space_name = sppoly$AUID
pN$space_id = 1:nrow(sppoly) # must match M$space
pN$time_name = as.character(pN$yrs)
pN$time_id = 1:pN$ny
pN$cyclic_name = as.character(pN$cyclic_levels)
pN$cyclic_id = 1:pN$nw
pW$space_name = sppoly$AUID
pW$space_id = 1:nrow(sppoly) # must match M$space
pW$time_name = as.character(pW$yrs)
pW$time_id = 1:pW$ny
pW$cyclic_name = as.character(pW$cyclic_levels)
pW$cyclic_id = 1:pW$nw
pH$space_name = sppoly$AUID
pH$space_id = 1:nrow(sppoly) # must match M$space
pH$time_name = as.character(pH$yrs)
pH$time_id = 1:pH$ny
pH$cyclic_name = as.character(pH$cyclic_levels)
pH$cyclic_id = 1:pH$nw
# create model data inputs and the output fields
M = snowcrab.db( p=pN, DS="carstm_inputs", sppoly=sppoly, redo=TRUE ) # will redo if not found
# for mapping below, some bathymetry and polygons
additional_features = snowcrab_mapping_features(pN)
With all required parameters defined, the modelling is straightforward. Here we reused previous solution modes ("theta") to speed up solutions.
Each variable is modelled with the same covariates.
# total numbers
sppoly = areal_units( p=pN )
M = snowcrab.db( p=pN, DS="carstm_inputs", sppoly=sppoly ) # will redo if not found
io = which(M$tag=="observations")
ip = which(M$tag=="predictions")
iq = unique( c( which( M$totno > 0), ip ) )
iw = unique( c( which( M$totno > 5), ip ) ) # need a good sample to estimate mean size
# number
carstm_model( p=pN, data=M[ iq, ], sppoly=sppoly,
theta=c( 2.7291,1.8146,2.9382,0.0132,3.8666,-0.0211,4.2673,5.5037,6.1421,0.2391,4.2522,0.7666,-0.0100,0.8763 ),
nposteriors=5000,
toget = c("summary", "random_spatial", "predictions"),
posterior_simulations_to_retain = c("predictions"),
family = "poisson",
verbose=TRUE,
# redo_fit=FALSE,
# debug = "summary",
# debug = "predictions",
num.threads="4:3"
)
# posterior predictive check
carstm_posterior_predictive_check(p=pN, M=M[ iq, ] )
# EXAMINE POSTERIORS AND PRIORS
res = carstm_model( p=pN, DS="carstm_summary" ) # parameters in p and summary
res_vars = c( names( res$hypers), names(res$fixed) )
for (i in 1:length(res_vars) ) {
o = carstm_prior_posterior_compare( res, vn=res_vars[i] )
dev.new(); print(o)
}
# mean size
carstm_model( p=pW, data=M[ iw, ], sppoly = sppoly,
# theta=c( 6.0911, 8.6746, 0.9708, 11.4664, -0.0007, 10.6392, 6.7992, 11.4451, 12.4703, 11.5656, 6.6841, 3.4669, 5.8501, 3.1671, 1.7484 ),
nposteriors=5000,
toget = c("summary", "random_spatial", "predictions"),
posterior_simulations_to_retain = c("predictions"),
family = "gaussian",
verbose=TRUE,
# redo_fit=FALSE,
# debug = "summary",
# control.inla = list( optimiser="gsl" ),
control.inla = list( strategy="laplace", optimiser="gsl", restart=1 ), # gsl = gsl::bfgs2
# control.mode = list( restart=TRUE ),
num.threads="4:3"
)
# posterior predictive check
carstm_posterior_predictive_check(p=pW, M=M[ iw, ] )
# EXAMINE POSTERIORS AND PRIORS
res = carstm_model( p=pW, DS="carstm_summary" ) # parameters in p and summary
res_vars = c( names( res$hypers), names(res$fixed) )
for (i in 1:length(res_vars) ) {
o = carstm_prior_posterior_compare( res, vn=res_vars[i] )
dev.new(); print(o)
}
# model pa using all data
carstm_model( p=pH, data=M, sppoly=sppoly,
theta = c( 0.8917, 2.0052, 4.5021, -0.0000, 1.5400, -2.4689, 1.1762, 2.6536, 2.9546, -2.1406, 3.5352, -0.7465, 3.2443, 2.4420
),
nposteriors=5000,
toget = c("summary", "random_spatial", "predictions"),
posterior_simulations_to_retain = c("predictions"),
family = "binomial", # "binomial", # "nbinomial", "betabinomial", "zeroinflatedbinomial0" , "zeroinflatednbinomial0"
verbose=TRUE,
# redo_fit=FALSE,
# debug = "summary",
# control.family=list(control.link=list(model="logit")), # default for binomial .. no need to specify
# control.inla = list( strategy="laplace", int.strategy="eb" ),
num.threads="4:3"
)
# posterior predictive check
carstm_posterior_predictive_check(p=pH, M=M[ , ] )
# EXAMINE POSTERIORS AND PRIORS
res = carstm_model( p=pH, DS="carstm_summary" ) # parameters in p and summary
res_vars = c( names( res$hypers), names(res$fixed) )
for (i in 1:length(res_vars) ) {
o = carstm_prior_posterior_compare( res, vn=res_vars[i] )
dev.new(); print(o)
}
# end spatiotemporal model
# some maps and plots
for (vns in c( "number", "meansize", "habitat") ) {
#vns ="number"
#vns ="meansize"
#vns ="habitat"
if ( vns=="number" ) {
p=pN
ylab = "Number"
fn_root_prefix = "Predicted_numerical_abundance"
fn_root = "number"
# title= paste( snowcrab_filter_class, "Number; no./m^2" )
}
if ( vns=="meansize") {
p=pW
ylab = "Mean weight"
fn_root_prefix = "Predicted_meansize"
fn_root = "weight"
# title= paste( snowcrab_filter_class, "Mean weight; kg" )
}
if ( vns=="habitat" ) {
p=pH
ylab = "Probability"
fn_root_prefix = "Predicted_presence_absence"
fn_root = "habitat"
# title= paste( snowcrab_filter_class, "Probability")
}
outputdir = file.path( p$modeldir, p$carstm_model_label, "figures" )
if ( !file.exists(outputdir)) dir.create( outputdir, recursive=TRUE, showWarnings=FALSE )
# # to compute habitat prob
# sims = carstm_posterior_simulations( pH=pH, pa_threshold=0.05, qmax=0.95 )
# SM = aggregate_simulations(
# sims=sims,
# sppoly=sppoly,
# fn=carstm_filenames( pN, returnvalue="filename", fn="aggregated_timeseries" ),
# yrs=pN$yrs,
# method="mean",
# redo=TRUE
# )
# outputdir = file.path( carstm_filenames( pN, returnvalue="output_directory"), "aggregated_habitat_timeseries" )
# ylabel = "Habitat probability"
# fn_ts = "habitat_M0.png"
# vn = paste("habitat", "predicted", sep=".")
# outputdir2 = file.path( carstm_filenames( pN, returnvalue="output_directory"), "predicted_habitat" )
# to load currently saved results
res = carstm_model( p=p, DS="carstm_summary" ) # parameters in p and direct summary
res$direct
res = NULL; gc()
# plots with 95% PI
carstm_plot_marginaleffects( p, outputdir, fn_root )
# maps of some of the results
outputdirmap = file.path(p$modeldir, p$carstm_model_label, "maps" )
carstm_plot_map( p=p, outputdir=outputdirmap, fn_root_prefix=fn_root_prefix , additional_features=additional_features,
toplot="random_spatial", probs=c(0.025, 0.975) )
carstm_plot_map( p=p, outputdir=outputdirmap, fn_root_prefix=fn_root_prefix , additional_features=additional_features,
toplot="predictions", probs=c(0.1, 0.9))
}
Convolution is straightforward as it is operating upon joint posterior simulations. Add more maps/figures as required.
# wgts_max = 1.1 # kg, hard upper limit
# N_max = NULL
# # quantile( M$totno[ipositive]/M$data_offset[ipositive], probs=0.95, na.rm=TRUE )
# posterior sims
require(ggplot2)
library(ggbreak)
regions = c("cfanorth", "cfasouth", "cfa4x" )
region_label = c("N-ENS", "S-ENS", "4X")
color_map = c("#E69F00", "#56B4E9", "#CC79A7" )
additional_features = snowcrab_mapping_features(pN)
sppoly = areal_units( p=pN ) # to reload
for ( vns in c("abundance", "habitat") ) {
if (vns=="abundance") {
sims = carstm_posterior_simulations( pN=pN, pW=pW, pH=pH, pa_threshold=0.05, qmax=0.95 )
sims = sims / 10^6 # units: kg ; div (10^6) -> kt ;;
# sims[ which(!is.finite(sppoly$npts)),, ] = 0
SM = aggregate_simulations(
sims=sims,
sppoly=sppoly,
fn=carstm_filenames( pN, returnvalue="filename", fn="aggregated_timeseries" ),
yrs=pN$yrs,
method="sum",
redo=TRUE
)
# units: kt
# note: using pN, even though this is biomass
outputdir = file.path( carstm_filenames( pN, returnvalue="output_directory"), "aggregated_biomass_timeseries" )
ylabel = "Biomass index (kt)"
fn_ts = "biomass_M0.png"
vn = paste("biomass", "predicted", sep=".")
outputdir2 = file.path( carstm_filenames( pN, returnvalue="output_directory"), "predicted_biomass_densities" )
}
if (vns=="habitat") {
sims = carstm_posterior_simulations( pH=pH, pa_threshold=0.05, qmax=0.95 )
SM = aggregate_simulations(
sims=sims,
sppoly=sppoly,
fn=carstm_filenames( pN, returnvalue="filename", fn="aggregated_timeseries" ),
yrs=pN$yrs,
method="mean",
redo=TRUE
)
# units: probability
# note: using pN, even though this is habitat
outputdir = file.path( carstm_filenames( pN, returnvalue="output_directory"), "aggregated_habitat_timeseries" )
ylabel = "Habitat probability"
fn_ts = "habitat_M0.png"
vn = paste("habitat", "predicted", sep=".")
outputdir2 = file.path( carstm_filenames( pN, returnvalue="output_directory"), "predicted_habitat" )
}
RES= SM$RES
if ( !file.exists(outputdir)) dir.create( outputdir, recursive=TRUE, showWarnings=FALSE )
# plot effects
( fn = file.path( outputdir, "cfa_all.png") )
png( filename=fn, width=3072, height=2304, pointsize=12, res=300 )
plot( cfaall ~ yrs, data=RES, lty="solid", lwd=4, pch=20, col="slateblue", type="b", ylab=ylabel, xlab="")
lines( cfaall_lb ~ yrs, data=RES, lty="dotted", lwd=2, col="slategray" )
lines( cfaall_ub ~ yrs, data=RES, lty="dotted", lwd=2, col="slategray" )
dev.off()
( fn = file.path( outputdir, "cfa_south.png") )
png( filename=fn, width=3072, height=2304, pointsize=12, res=300 )
plot( cfasouth ~ yrs, data=RES, lty="solid", lwd=4, pch=20, col="slateblue", type="b", ylab=ylabel, xlab="")
lines( cfasouth_lb ~ yrs, data=RES, lty="dotted", lwd=2, col="slategray" )
lines( cfasouth_ub ~ yrs, data=RES, lty="dotted", lwd=2, col="slategray" )
dev.off()
( fn = file.path( outputdir, "cfa_north.png") )
png( filename=fn, width=3072, height=2304, pointsize=12, res=300 )
plot( cfanorth ~ yrs, data=RES, lty="solid", lwd=4, pch=20, col="slateblue", type="b", ylab=ylabel, xlab="")
lines( cfanorth_lb ~ yrs, data=RES, lty="dotted", lwd=2, col="slategray" )
lines( cfanorth_ub ~ yrs, data=RES, lty="dotted", lwd=2, col="slategray" )
dev.off()
( fn = file.path( outputdir, "cfa_4x.png") )
png( filename=fn, width=3072, height=2304, pointsize=12, res=300 )
plot( cfa4x ~ yrs, data=RES, lty="solid", lwd=4, pch=20, col="slateblue", type="b", ylab=ylabel, xlab="")
lines( cfa4x_lb ~ yrs, data=RES, lty="dotted", lwd=2, col="slategray" )
lines( cfa4x_ub ~ yrs, data=RES, lty="dotted", lwd=2, col="slategray" )
dev.off()
a = cbind( "cfanorth", RES[,c("yrs", "cfanorth", "cfanorth_lb", "cfanorth_ub")] )
b = cbind( "cfasouth", RES[,c("yrs", "cfasouth", "cfasouth_lb", "cfasouth_ub")] )
c = cbind( "cfa4x", RES[,c("yrs", "cfa4x", "cfa4x_lb", "cfa4x_ub")] )
names(a) = names(b) = names(c) = c("region", "year", "mean", "lb", "ub")
tdb = rbind(a, b, c)
tdb$region = factor(tdb$region, levels=regions, labels =region_label)
tdb = tdb[(which(!is.na(tdb$region))), ]
fn = file.path( outputdir, fn_ts )
if (vns=="abundance") {
out = ggplot(tdb, aes(x=year, y=mean, fill=region, colour=region)) +
geom_line( alpha=0.9, linewidth=1.2 ) +
geom_point(aes(shape=region), size=3, alpha=0.7 ) +
geom_errorbar(aes(ymin=lb,ymax=ub), linewidth=0.8, alpha=0.8, width=0.3) +
labs(x="Year/Année", y="Biomass index (kt) / Indice de biomasse (kt)", size = rel(1.5)) +
scale_colour_manual(values=color_map) +
scale_fill_manual(values=color_map) +
scale_shape_manual(values = c(15, 17, 19)) +
theme_light( base_size = 22) +
theme( legend.position="inside", legend.position.inside=c(0.75, 0.9), legend.title=element_blank()) +
scale_y_break(c(14, 28), scales = 1)
# scale_y_continuous( limits=c(0, 300) )
ggsave(filename=fn, plot=out, width=12, height = 8)
print(out)
# map it ..mean density
if ( !file.exists(outputdir2)) dir.create( outputdir2, recursive=TRUE, showWarnings=FALSE )
B = apply( sims, c(1,2), mean ) # sims units (kt);
B[ which(!is.finite(B)) ] = NA
# brks = pretty( log10( quantile( B[], probs=c(0.05, 0.95), na.rm=TRUE )* 10^6) )
sa = units::drop_units(sppoly$au_sa_km2)
brks = pretty( ( quantile( log(B * 10^6 / sa), probs=c(0.05, 0.95), na.rm=TRUE )) )
for (i in 1:length(pN$yrs) ) {
y = as.character( pN$yrs[i] )
# u = log10( B[,y]* 10^6 ) ## Total kt->kg: log10( kg )
u = log( B[,y]* 10^6 / sa) # ;; density log10( kg /km^2 )
sppoly[,vn] = u
outfilename = file.path( outputdir2 , paste( "biomass", y, "png", sep=".") )
carstm_map( sppoly=sppoly, vn=vn,
breaks=brks,
additional_features=additional_features,
legend.position.inside=c( 0.1, 0.9 ),
annotation=y,
# annotation=paste( "log_10( Predicted biomass density; kg/km^2 )", y ),
colors=rev(RColorBrewer::brewer.pal(5, "RdYlBu")),
outfilename=outfilename
)
} # end year loop
}
if (vns=="habitat") {
out = ggplot(tdb, aes(x=year, y=mean, fill=region, colour=region)) +
geom_line( alpha=0.9, linewidth=1.2 ) +
geom_point(aes(shape=region), size=3, alpha=0.7 ) +
geom_errorbar(aes(ymin=lb,ymax=ub), linewidth=0.8, alpha=0.8, width=0.3) +
labs(x="Year/Année", y="Viable habitat (probability) /\nHabitat viable (probabilité)", size = rel(1.0)) +
scale_colour_manual(values=color_map) +
scale_fill_manual(values=color_map) +
scale_shape_manual(values = c(15, 17, 19)) +
theme_light( base_size = 22) +
theme( legend.position="inside", legend.position.inside=c(0.75, 0.9), legend.title=element_blank())
# scale_y_continuous( limits=c(0, 300) )
ggsave(filename=fn, plot=out, width=12, height = 8)
print(out)
if ( !file.exists(outputdir2)) dir.create( outputdir2, recursive=TRUE, showWarnings=FALSE )
B = apply( sims, c(1,2), mean ) # sims units (kt);
B[ which(!is.finite(B)) ] = NA
# brks = pretty( log10( quantile( B[], probs=c(0.05, 0.95), na.rm=TRUE )* 10^6) )
sa = units::drop_units(sppoly$au_sa_km2)
brks = pretty( c(0, 1) )
for (i in 1:length(pN$yrs) ) {
y = as.character( pN$yrs[i] )
# u = log10( B[,y]* 10^6 ) ## Total kt->kg: log10( kg )
u = B[,y]
sppoly[,vn] = u
outfilename = file.path( outputdir2 , paste( "habitat", y, "png", sep=".") )
carstm_map( sppoly=sppoly, vn=vn,
breaks=brks,
additional_features=additional_features,
legend.position.inside=c( 0.1, 0.9 ),
annotation=y,
# annotation=paste( "log_10( Predicted biomass density; kg/km^2 )", y ),
colors=rev(RColorBrewer::brewer.pal(5, "RdYlBu")),
outfilename=outfilename
)
} # end year loop
}
} # end vns loop
# end assimilate size and numbers
The fishery model used for stock assessment is the biomass dynamics model. It is operated through Julia. This step creates the data required.
## note the output directory .. this is used for the next script
# saves in carstm_directory = file.path( modeldir, carstm_model_label )
run_is_operational = TRUE
# run_is_operational = FALSE
fishery_model_data_inputs(
year.assessment=year.assessment,
type="biomass_dynamics",
snowcrab_filter_class="fb",
modeldir= ifelse( run_is_operational, pN$modeldir, file.path( homedir, "projects", "dynamical_model", "snowcrab", "data" ) ),
carstm_model_label=carstm_model_label,
for_julia=TRUE,
fishery_model_label="turing1"
)
Rdata files are ready to load through Julia. Continue to step 04.snowcrab_fishery_model_turing.md to complete the assessment.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.