View source: R/ExponentialFitFunctions.R
FitAsympMarks.UpOrDown | R Documentation |
Fit exponential
FitAsympMarks.UpOrDown(
dat.exprs.long.gene.lst,
jmark1 = "H3K4me1",
jmark2 = "H3K36me3",
asymp.init = "auto",
loggamma.init = 0,
jiter = 1000,
MaxOrMin = max
)
dat.exprs.long.gene.lst |
Wrangled data frame for a gene with colnames signal and ptime.exp.norm ready for fitting exponentials across pseudotime |
jmark1 |
name of mark1. In paper it is H3K4me1 |
jmark2 |
name of mark2. In paper it is H3K36me3 |
asymp.init |
init asymptote value. "auto" takes MaxOrMin function of the signal. MaxOrMin is "max" or "min". Set "max" if gene is downregulated, set "min" if upregulated. |
loggamma.init |
init value for log of gamma (time constant) |
jiter |
number of iterations for fitting nonlinear model |
MaxOrMin |
"max" or "min". Set "max" if gene is downregulated, set "min" if upregulated. |
data.frame of exponential fit outputs on mark1 and mark2
upordown <- IsUpOrDown(dat.impute.lst, refmark = jmark2, jgene = jgene, dat.meta.long = dat.meta.long)
offset.fn <- ifelse(upordown == "up", min, max)
asymp.init.fn <- ifelse(upordown == "up", max, min)
dat.exprs.long.gene.lst <- SetupDatForGene.UpOrDown(dat.impute.lst, dat.meta.long, jgene, jmark1 = jmark1, jmark2 = jmark2, returnlst = TRUE, offset.zero = TRUE, MaxOrMin = offset.fn)
dat.out <- FitAsympMarks.UpOrDown(dat.exprs.long.gene.lst, jmark1 = jmark1, jmark2 = jmark2, asymp.init = "auto", loggamma.init = 0, MaxOrMin = asymp.init.fn)
outlst <- list(dat.out = dat.out, dat.exprs.long.gene.lst = dat.exprs.long.gene.lst, upordown = upordown)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.