generateHyperControl: Generates a hyperparameter tuning control object

Description Usage Arguments Value Examples

View source: R/generateHyperControl.R

Description

Tries to automatically create a suitable hyperparameter tuning control.

Usage

1
2
3
4
5
6
generateHyperControl(
  task,
  par.config = NULL,
  learner = NULL,
  budget.evals = 250
)

Arguments

task

[Task] The Task

par.config

[ParConfig] The Parameter Configuration

learner

[Learner] Learner

budget.evals

[integer] How many train-test iterations do you want to allow?

Value

[HyperControl]

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
par.config = getDefaultParConfig("regr.randomForest")
hyper.control = generateHyperControl(bh.task, par.config)
# get what is inside
getHyperControlMeasures(hyper.control)
getHyperControlMlrControl(hyper.control)
getHyperControlResampling(hyper.control)
# change what is inside
hyper.control = setHyperControlMeasures(hyper.control, measures = medse)
hyper.control = setHyperControlMlrControl(
  hyper.control,
  mlr.control = makeTuneControlRandom(maxit = 10))
hyper.control = setHyperControlResampling(hyper.control, resampling = cv3)
hyperopt(task = bh.task, par.config = par.config, hyper.control = hyper.control)

jakob-r/mlrHyperopt documentation built on Jan. 10, 2022, 4:32 p.m.