makeHyperControl: Hyperparameter Tuning Control Object

Description Usage Arguments Value See Also Examples

View source: R/HyperControl.R

Description

Defines how the hyperparameter tuning should be conducted

Usage

1
2
3
4
5
6
makeHyperControl(
  mlr.control = NULL,
  resampling = NULL,
  measures = NULL,
  par.config = NULL
)

Arguments

mlr.control

[TuneControl]
Control object for search method. Also selects the optimization algorithm for tuning.

resampling

[ResampleDesc] The resampling determines how the performance is obtained during tuning.

measures

[Measure | list of Measure]
Performance measure(s) to evaluate. Default is the default measure for the task, see here getDefaultMeasure.

par.config

[ParConfig] The Parameter Configuration

Value

[HyperControl]

See Also

Other HyperControl: getHyperControlMeasures(), getHyperControlMlrControl(), getHyperControlResampling(), setHyperControlMeasures(), setHyperControlMlrControl(), setHyperControlResampling()

Examples

1
2
3
4
5
6
hyper.control = makeHyperControl(
  mlr.control = makeTuneControlRandom(maxit = 5),
  resampling = cv2,
  measures = acc
)
hyperopt(task = iris.task, learner = "classif.svm", hyper.control = hyper.control)

jakob-r/mlrHyperopt documentation built on Jan. 10, 2022, 4:32 p.m.