View source: R/generateClusteredNetwork.R
generateClusteredNetwork | R Documentation |
This function generates clustered networks. It first generates n
cluster
centeres via a latin hypercube design to ensure space-filling property, i. e.,
to ensure, that the clusters are placed far from each other.
It then distributes points to the clusters according to
gaussian distributions using the cluster centers as the mean vector and
the distance to the nearest neighbour cluster center as the variance.
This procedure works well if the box constraints of the hypercube are
not too low (see the lower bound for the upper
parameter).
generateClusteredNetwork(
n.cluster,
n.points,
n.dim = 2L,
generator = lhs::maximinLHS,
lower = 0,
upper = 100,
sigmas = NULL,
n.depots = NULL,
distribution.strategy = "equally.distributed",
cluster.centers = NULL,
out.of.bounds.handling = "mirror",
name = NULL,
...
)
n.cluster |
[ |
n.points |
[ |
n.dim |
[ |
generator |
[ |
lower |
[ |
upper |
[ |
sigmas |
[ |
n.depots |
[ |
distribution.strategy |
[ |
cluster.centers |
[ |
out.of.bounds.handling |
[
Default is “mirror”. |
name |
[ |
... |
[ |
[ClusteredNetwork
]
Object of type ClusteredNetwork
.
generateRandomNetwork
x = generateClusteredNetwork(n.points = 20L, n.cluster = 2L)
y = generateClusteredNetwork(n.points = 40L, n.cluster = 3L, n.depots = 2L)
z = generateClusteredNetwork(n.points = 200L, n.cluster = 10L, out.of.bounds.handling = "reset")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.