Description Usage Arguments Examples
Screeplot, helps deciding the optimal number of superclasses. Available for both PAM and hierarchical clustering.
1 2 3 4 5 6 7 | aweSOMscreeplot(
som,
nclass = 2,
method = c("hierarchical", "pam"),
hmethod = c("complete", "ward.D2", "ward.D", "single", "average", "mcquitty",
"median", "centroid")
)
|
som |
'kohonen' object, a SOM created by the 'kohonen::som' function. |
nclass |
number of superclasses to be visualized in the screeplot. Default is 2. |
method |
Method used for clustering. Hierarchical clustering ("hierarchical") and Partitioning around medoids ("pam") can be used. Default is hierarchical clustering. |
hmethod |
For hierarchicical clustering, the clustering method, by default "complete". See the stats::hclust documentation for more details. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## Build training data
dat <- iris[, c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")]
### Scale training data
dat <- scale(dat)
## Train SOM
### Initialization (PCA grid)
init <- somInit(dat, 4, 4)
ok.som <- kohonen::som(dat, grid = kohonen::somgrid(4, 4, 'hexagonal'),
rlen = 100, alpha = c(0.05, 0.01),
radius = c(6.08,-6.08),
init = init, dist.fcts = 'sumofsquares')
## Group cells into superclasses (PAM clustering)
superclust <- cluster::pam(ok.som$codes[[1]], 2)
superclasses <- superclust$clustering
aweSOMscreeplot(ok.som, method = 'hierarchical',
hmethod = 'complete', nclass = 2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.