## Prior density
psi = function(beta, lambda) {
m = length(beta)
C = 2^(-m) * pi^(-(m-1)/2) / (gamma((m+1)/2))
logDens = log(C) + m*log(lambda) - lambda*sqrt(sum(beta^2))
#dens = C * lambda^m * exp(-lambda*sqrt(sum(beta^2)))
dens = exp(logDens)
return(dens)
}
## pStar function
pStar = function(beta, lambda1, lambda0, theta) {
psi1 = psi(beta=beta, lambda=lambda1)
psi0 = psi(beta=beta, lambda=lambda0)
## if a coefficient is really large then both these will
## numerically be zero because R can't handle such small numbers
if ((theta*psi1) == 0 & (1 - theta)*psi0 == 0) {
p = 1
} else {
p = (theta*psi1) / (theta*psi1 + (1 - theta)*psi0)
}
return(p)
}
## Lambda star function
lambdaStar = function(beta, lambda1, lambda0, theta) {
p = pStar(beta = beta, lambda1 = lambda1,
lambda0 = lambda0, theta = theta)
l = lambda1*p + lambda0*(1 - p)
return(l)
}
## g function
gFunc = function(beta, lambda1, lambda0, theta, sigmasq, n) {
l = lambdaStar(beta = beta, lambda1 = lambda1,
lambda0 = lambda0, theta = theta)
p = pStar(beta = beta, lambda1 = lambda1,
lambda0 = lambda0, theta = theta)
g = (l - lambda1)^2 + (2*n/sigmasq)*log(p)
return(g)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.