networkTest | R Documentation |
Test of equality between network properties
degreeCentralityTest( expr, labels, adjacencyMatrix, numPermutations = 1000, options = NULL, BPPARAM = NULL ) betweennessCentralityTest( expr, labels, adjacencyMatrix, numPermutations = 1000, options = NULL, BPPARAM = NULL ) closenessCentralityTest( expr, labels, adjacencyMatrix, numPermutations = 1000, options = NULL, BPPARAM = NULL ) eigenvectorCentralityTest( expr, labels, adjacencyMatrix, numPermutations = 1000, options = NULL, BPPARAM = NULL ) clusteringCoefficientTest( expr, labels, adjacencyMatrix, numPermutations = 1000, options = NULL, BPPARAM = NULL ) edgeBetweennessTest( expr, labels, adjacencyMatrix, numPermutations = 1000, options = NULL, BPPARAM = NULL ) degreeDistributionTest( expr, labels, adjacencyMatrix, numPermutations = 1000, options = list(bandwidth = "Sturges"), BPPARAM = NULL ) spectralEntropyTest( expr, labels, adjacencyMatrix, numPermutations = 1000, options = list(bandwidth = "Sturges"), BPPARAM = NULL ) spectralDistributionTest( expr, labels, adjacencyMatrix, numPermutations = 1000, options = list(bandwidth = "Sturges"), BPPARAM = NULL )
expr |
Matrix of variables (columns) vs samples (rows) |
labels |
a vector in which a position indicates the phenotype of the corresponding sample or state |
adjacencyMatrix |
a function that returns the adjacency matrix for a given variables values matrix |
numPermutations |
number of permutations that will be carried out in the permutation test |
options |
a list containing parameters. Used only in degreeDistributionTest, spectralEntropyTest and spectralDistributionTest functions. It can be set to either |
BPPARAM |
An optional BiocParallelParam instance determining the parallel back-end to be used during evaluation, or a list of BiocParallelParam instances, to be applied in sequence for nested calls to BiocParallel functions. MulticoreParam() |
A list containing: "measure" - difference among two or more networks associated with each phenotype. To compare networks by centralities and clustering coefficient, one uses euclidian distance. In spectral entropy comparison, one uses the absolute difference. In distributions (spectral and degree) comparison, one uses Kulback-Liebler divergence. "p.value" - the Nominal p-value of the test. "Partial" - a vector with the weigths of each network in a measure value.
set.seed(1) data("varFile") gliomaData <- system.file("extdata", "variablesValue_BioNetStat_tutorial_data.csv", package = "BioNetStat") labels<-doLabels(gliomaData) adjacencyMatrix1 <- adjacencyMatrix(method="spearman", association="pvalue", threshold="fdr", thr.value=0.05, weighted=FALSE) # The numPermutations number is 1 to do a faster example, but we advise to use unless 1000 permutations in real analysis # Degree centrality test diffNetAnalysis(method=degreeCentralityTest, varFile=varFile, labels=labels, varSets=NULL, adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL, seed=NULL, min.vert=5, option=NULL) # Betweenness centrality test diffNetAnalysis(method=betweennessCentralityTest, varFile=varFile, labels=labels, varSets=NULL, adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL, seed=NULL, min.vert=5, option=NULL) # Closeness centrality test diffNetAnalysis(method=closenessCentralityTest, varFile=varFile, labels=labels, varSets=NULL, adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL, seed=NULL, min.vert=5, option=NULL) # Eigenvector centrality test diffNetAnalysis(method=eigenvectorCentralityTest, varFile=varFile, labels=labels, varSets=NULL, adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL, seed=NULL, min.vert=5, option=NULL) # Clustering coefficient test diffNetAnalysis(method=clusteringCoefficientTest, varFile=varFile, labels=labels, varSets=NULL, adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL, seed=NULL, min.vert=5, option=NULL) # Edge betweenness centrality test diffNetAnalysis(method=edgeBetweennessTest, varFile=varFile, labels=labels, varSets=NULL, adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL, seed=NULL, min.vert=5, option=NULL) # Degree distribution test diffNetAnalysis(method=degreeDistributionTest, varFile=varFile, labels=labels, varSets=NULL, adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL, seed=NULL, min.vert=5, options=list(bandwidth="Sturges")) # Spectral entropy test diffNetAnalysis(method=spectralEntropyTest, varFile=varFile, labels=labels, varSets=NULL, adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL, seed=NULL, min.vert=5, options=list(bandwidth="Sturges")) # Spectral distribution test diffNetAnalysis(method=spectralDistributionTest, varFile=varFile, labels=labels, varSets=NULL, adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL, seed=NULL, min.vert=5, options=list(bandwidth="Sturges"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.