knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
prettyglm is an R package which provides a set of functions which create beautiful coefficient summaries of generalised linear models.
You can install the latest CRAN release with:
install.packages('prettyglm')
To explore the functionality of prettyglm we will use a data set sourced from kaggle. To learn more about each of the provided functions please read the articles.
A critical step for this package to work well is to set all categorical predictors as factors.
library(prettyglm) library(dplyr) data("bank") # Easiest way to convert multiple columns to a factor. columns_to_factor <- c('job', 'marital', 'education', 'default', 'housing', 'loan') bank_data <- bank_data %>% dplyr::filter(loan != 'unknown') %>% dplyr::filter(default != 'yes') %>% dplyr::mutate(age = as.numeric(age)) %>% dplyr::mutate_at(columns_to_factor, list(~factor(.))) %>% # multiple columns to factor dplyr::mutate(T_DEPOSIT = as.factor(base::ifelse(y=='yes',1,0))) #convert target to 0 and 1 for performance plots
For this example we will build a glm using stats::glm()
, however prettyglm
is working to support parsnip
and workflow
model objects which use the glm model engine.
deposit_model <- stats::glm(T_DEPOSIT ~ marital + default:loan + loan + age, data = bank_data, family = binomial)
pretty_coefficients()
creates a neat table of the model coefficients, see vignette("creating_pretty_coefficients")
.
pretty_coefficients(deposit_model, type_iii = 'Wald')
pretty_relativities()
creates beautiful plots of model coefficients, see vignette("simple_pretty_relativities")
and vignette("interaction_pretty_relativities")
to get started.
pretty_relativities(feature_to_plot = 'marital', model_object = deposit_model)
pretty_relativities(feature_to_plot = 'age', model_object = deposit_model)
pretty_relativities(feature_to_plot = 'default:loan', model_object = deposit_model, iteractionplottype = 'colour', facetorcolourby = 'loan')
one_way_ave()
creates one-way model performance plots, see vignette("onewayave")
to get started.
one_way_ave(feature_to_plot = 'age', model_object = deposit_model, target_variable = 'T_DEPOSIT', data_set = bank_data)
one_way_ave(feature_to_plot = 'education', model_object = deposit_model, target_variable = 'T_DEPOSIT', data_set = bank_data)
actual_expected_bucketed()
creates actual vs expected performance plots by predicted band, see vignette("visualisingoverallave")
to get started.
actual_expected_bucketed(target_variable = 'T_DEPOSIT', model_object = deposit_model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.