The function one_way_ave()
creates one-way actual vs expect plots.
A critical step for this package to work is to set all categorical predictors as factors.
library(dplyr) library(prettyglm) data('titanic') # Easy way to convert multiple columns to a factor. columns_to_factor <- c('Pclass', 'Sex', 'Cabin', 'Embarked', 'Cabintype') meanage <- base::mean(titanic$Age, na.rm=T) titanic <- titanic %>% dplyr::mutate_at(columns_to_factor, list(~factor(.))) %>% dplyr::mutate(Age =base::ifelse(is.na(Age)==T,meanage,Age)) %>% dplyr::mutate(Age_Cat = prettyglm::cut3(Age, levels.mean = TRUE, g =10)) # Build a basic glm survival_model <- stats::glm(Survived ~ Pclass + Sex + Fare + Age_Cat + Embarked + SibSp + Parch, data = titanic, family = binomial(link = 'logit'))
actual_expected_bucketed(target_variable = 'Survived', model_object = survival_model, data_set = titanic)
actual_expected_bucketed(target_variable = 'Survived', model_object = survival_model, data_set = titanic, facetby = 'Sex')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.