| lmperm | R Documentation | 
Compute permutation marginal tests for linear models. This function produces t statistics with univariate and bivariate p-values. It gives the choice between multiple methods to handle nuisance variables.
lmperm(
  formula,
  data = NULL,
  np = 5000,
  method = NULL,
  type = "permutation",
  ...
)
formula | 
 A formula object.  | 
data | 
 A data frame or matrix.  | 
np | 
 The number of permutations. Default value is   | 
method | 
 A character string indicating the method use to handle nuisance variables. Default is   | 
type | 
 A character string to specify the type of transformations: "permutation" and "signflip" are available. Is overridden if P is given. See help from Pmat.  | 
... | 
 Futher arguments, see details.  | 
The following methods are available for the fixed effects model defined as y = D\eta + X\beta + \epsilon. If we want to test \beta = 0 and take into account the effects of the nuisance variables D, we transform the data :
method argument  |  y*  |  D*  |  X* | 
"draper_stoneman"  |  y  |  D  |  PX | 
"freedman_lane"  |  (H_D+PR_D)y  |  D  |  X | 
"manly"  |  Py  |  D  |  X | 
"terBraak"  |  (H_{X,D}+PR_{X,D})y  |  D  |  X | 
"kennedy"  |  PR_D y  |  R_D X | 
|
"huh_jhun"  |  PV'R_Dy  |  V'R_D X | 
|
"dekker"  |  y  |  D  |  PR_D X | 
Other arguments could be pass in ... :
 
P : a matrix containing the permutations of class matrix or Pmat for the reproductibility of the results. The first column must be the identity. P overwrites np argument. 
 
rnd_rotation : a random matrix of size n \times n to compute the rotation used for the "huh_jhun" method.
A lmperm object. See aovperm.
jaromil.frossard@unige.ch
Kherad-Pajouh, S., & Renaud, O. (2010). An exact permutation method for testing any effect in balanced and unbalanced fixed effect ANOVA. Computational Statistics & Data Analysis, 54(7), 1881-1893.
Kherad-Pajouh, S., & Renaud, O. (2015). A general permutation approach for analyzing repeated measures ANOVA and mixed-model designs. Statistical Papers, 56(4), 947-967.
Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. Neuroimage, 92, 381-397.
aovperm plot.lmperm
Other main function: 
aovperm(),
clusterlm()
## data
data("emergencycost")
## Testing at 14 days
emergencycost$LOS14 <- emergencycost$LOS - 14
## Univariate t test
contrasts(emergencycost$insurance) <- contr.sum
contrasts(emergencycost$sex) <- contr.sum
## Warning : np argument must be greater (recommendation: np>=5000)
modlm_cost_14 <- lmperm(cost ~ LOS14*sex*insurance, data = emergencycost, np = 2000)
modlm_cost_14
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.